Proposed Milton Quarry East Extension JART COMMENT SUMMARY TABLE – Air Quality

Please accept the following as feedback from the Milton Quarry Joint Agency Review Team (JART). Fully addressing each comment below will help expedite the potential for resolutions of the consolidated JART objections and individual agency objections. Additional, new comments may be provided once a response has been prepared to the comments raised below and additional information provided.

	JART Comments (October 2022)	Reference	Source of Comment	Applicant Response November 2022	JART Response
Rep	ort/Date: Air Quality Assessment November 16, 2021		Author: RWI	וכ	
1.	The AQ report's conclusion does not agree with the AQ reports tabulated model results. The AQ report concludes that the proposed extension will not result in any adverse air quality impact to surrounding sensitive receptors, with appropriate mitigation measures in place. The report states that, for both scenarios, when background concentrations are added to the predicted impacts from operations at the proposed extension, "the cumulative concentrations remain below the relevant criteria at all receptor locations." However, examination of Tables 3 and 4 in the AQ report show that when background concentrations were added to modeled PM10 impacts, the resulting maximum predicted concentrations exceeded the criteria level at many of the sensitive receptors, including up to 184% of the relevant criteria for PM10, as many as 28 excursions above the criteria over 5 years, and were more than 80-90% of the criteria for PM2.5 at many of the receptors for both scenarios. Table 3 indicates that, for Scenario 1, the predicted 24-hour average PM10 concentration exceeded the AAQC criteria (50 µg/m3) at 14 of the 24 modeled receptor locations (maximum receptor: 79 µg/m3, which is 158% of the criteria concentration). Table 4 shows that, for Scenario 2, the predicted 24-hour average PM10 concentration exceeded the criteria (50 µg/m3) at 15 of the 24 modeled receptor locations (maximum receptor: 92 µg/m3, which is 184% of the criteria concentration). The proposed project, on its own (without background concentrations added), exceeded the relevant criteria for PM10 at two of the receptor locations for Scenario 1, and at three of the receptor locations for Scenario 2. It is therefore not at all evident, according to the AQ report summary, that the project would not have any adverse air quality impacts, despite the report's assertions	General	Gray Sky Solutions	A clerical error occurred during the compilation of the final AODA-compliant version of the Air Quality Assessment. Incorrect versions of Tables 3 and 4 were provided. These versions reflected an unmitigated scenario. Updated versions of these tables were provided to Dr. Gray on September 30, 2022, which also reflected updates and refinements to the modelling assessment. This issue has been addressed.	
2.	 The air quality modeling results (predicted concentrations) that appear in the modeling files do not appear to agree with the results shown in the AQ report. Modeling files were received for the two scenarios (archived files were labeled SC1.ZIP and SC2.ZIP). Within each archive (ZIP) file, there were folders for each modeled pollutant (PM, PM10, PM2.5, Silica, and NOX). Each pollutant folder contains an AERMOD input control file, the AERMOD executable program file, two 5-year (1996-2000) meteorological data files, an hourly (variable) emission file, a file containing receptor location information, and a number of AERMOD output files (containing the model results). The AERMOD input control file, hourly emission file, receptor data file, and the two meteorological data files are input to the AERMOD program upon execution. The list of modeled sources are identical between the Scenario 1 and Scenario 2 model input control files (with the exception of the HAUL9 source, which was not included in the Scenario 2 input control file), however a number of the modeled sources have zero emission rates within each scenario (and therefore could have been omitted from the input files with no difference in the results). Sources were 	General	Gray Sky Solutions	As discussed with Dr Gray, the modelling files provided with the original assessment were developed through several iterations that unfortunately made the files difficult to follow. Revised model files were provided to Dr. Gray on September 30, 2022, that addressed these organizational issues, making them easier to follow. This issue has been addressed.	

modeled as either POINT sources or VOLUME sources within AERMOD, with all emission rates input in units of gram/second (g/s). Source modeling parameter data for point sources are base elevation, release height, stack exit temperature, stack exit velocity, and stack diameter. Volume source parameter data are base elevation, release height, and the initial lateral (horizontal) and vertical dimensions. A number of line sources were modeled as adjacent VOLUME sources, including dust and exhaust from haul load truck traffic (HAUL) and loader truck traffic (TLOAD). Tables 1 and 2, below, show the sources and modeled PM10 emission rates (g/s) for all sources that had non-zero emission rates for each scenario. The number of individual line source units that were modeled for each HAUL and TLOAD source is identified. Emission rates for sources that were modeled using a constant emission rate are shown in the "Constant" column. A number of sources were modeled using variable (hourly) emission rates, in which the hourly emission rates for every hour of the 5-year modeling period are specified in the hourly emissions input file. The 5year average PM10 emission rates for these sources are shown under the "Variable" column in Tables 1 and 2. At the bottom of each table, the total of all modeled emissions (the sum of the constant emission rate sources and the average rate for the variable emission rate sources) is shown. The average modeled PM10 emission rate for all Scenario 1 sources is 8.83 g/s (**70.1 lb/hour**). The average modeled PM10 emission rate for all Scenario 2 sources is 3.45 g/s (27.4 lb/hour), which is 39% of the average Scenario 1 emissions rate.

Table 1. Modeled PM₁₀ Emissions for Scenario 1 (g/s)

Source	Constant	Variable
		5 - yr Average
BLAST	1.00000	
PCRSH1	0.04290	
PCRSH3	0.01250	
GCRSH2	0.01250	
CO6	0.00053	
C07	0.00053	
CO8	0.00053	
SC1011	0.05140	
CCRSH2	0.00625	
LOAD1		0.03979
LOAD2		0.03979
EXC1		0.03979
CO9		0.20183
CO14		0.08215
PILE1		0.04196
PILE2		0.00847
PILE3		0.01579
PILE4		0.01579
PILE5		0.01579
PILE6		0.00847
PILE7		0.04196
LOAD4		0.02569
LOAD5		0.02572
LOAD6		0.02572
LOAD7		0.02572
LOAD8		0.02572
LOAD9		0.02572
LOAD10		0.02572
LOAD13		0.01267
PILE12		0.00192
PILE13		0.00192
PILE14		0.00192
LOAD15		0.01742
PILE11		0.01267
LOAD3		0.20183
VOL1	0.23600	
VOL2	0.16100	
HAUL1 (H1): 227 units	1.63000	
HAUL2 (H2): 300 units	1.59000	
HAUL3 (H3): 15 units	0.07310	
HAUL5 (L002): 64 units	0.07100	

Table 1, continued		
TLOAD1 (TL1): 5 units	0.09050	
TLOAD2 (TL2): 5 units	0.09050	
TLOAD12 (TL12): 3 units	0.02360	
TLOAD3 (TL3): 3 units	0.02430	
TLOAD4 (TL4): 3 units	0.02430	
TLOAD5 (TL5): 3 units	0.02430	
TLOAD6 (TL6): 3 units	0.02430	
TLOAD7 (TL7): 3 units	0.02430	
TLOAD8 (TL8): 3 units	0.02430	
TLOAD9 (TL9): 3 units	0.02430	
VOL3		0.48148
VOL4		0.59614
HAUL6 (H6): 106 units	0.16200	
GEN3	0.03330	
GEN4	0.03330	
PILE15		0.02068
LOAD16		0.02068
PCRSH4	0.06000	
GCRSH3	0.02870	
CO15	0.00511	
SC1213	0.21100	
CO16	0.00511	
C017	0.00511	
CO18	0.00511	
PILF16	0.00011	0 00347
CCRSH4	0 03320	0.00047
DII F17	0.03320	0 003/17
PILE17		0.00347
		0.00347
	0.04440	0.04313
	0.04440	
	0.04440	
$ \Pi A \cup L / (\Pi /). 200 UIIILS$	0.47000	
	0.02850	
	0.01690	
HAUL 9 (LUUI): 66 UNITS	0.22200	
SUM CONSTANT	6 671	
	0.0/1	2 450
SUIVI, VARIABLE (hourly)	0.000	2.156
ALL SOURCES	8.828	

Source	Constant	Variable
BLAST	1.00000	5-yr Average
PCRSH2	0.06000	
PCRSH3	0.01250	
GCRSH1	0.02870	
GCRSH2	0.01250	
CO1	0.00511	
CO2	0.00511	
CO3	0.00511	
CO4	0.00511	
CO5	0.00106	
CO6	0.00053	
C07	0.00053	
CO8	0.00053	
SC89	0.21100	
SC1011	0.05140	
CCRSH1	0.03320	
CCRSH2	0.00625	
LOAD1		0.00733
LOAD2		0.00733
EXC1		0.00733
LOAD13		0.00826
LOAD11		0.02068
PILE12		0.00207
PILE13		0.00207
PILE14		0.00207
LOAD15		0.00812
PILE8		0.00347
PILE9		0.00347
PILE10		0.00347
LOAD12		0.02407
PILE11		0.00769
HAUL1 (H1): 219 units	0.22100	
HAUL3 (H3): 15 units	0.23900	
HAUL4 (H4): 61 units	0.33100	
HAUL5 (L0004): 36 units	0.03250	
TLOAD1 (TL1): 14 units	0.19200	
ILOAD2 (TL2): 13 units	0.18200	
1LOAD11 (1L11): 9 units	0.04980	
1LOAD12 (1L12): 7 units	0.03140	
HAUL6 (H6): 109 units	0.03650	
GEN1	0.04440	
GEN2	0.04440	
GEN3	0.03330	
GEN4	0.03330	
HAUL8 (LUUU5): 221 units	0.39300	0.02059
	0.01600	0.02068
	0.01690	
SUM, CONSTANT	3.319	
		0 120
SUM, VARIABLE (hourly)		0.128

summed. For example, source groups were created to sum the concentration impacts of all the individual VOLUME source units within each line source (HAUL1, HAUL2, etc.). Source groups were also created with the names **SC1** and **SC2** (in *both* Scenario 1 and Scenario 2 model runs), presumably to account for the impacts from sources for each scenario (however the modeled emission rates in each scenario were different, so the SC2 group in the Scenario 1 model run does not reflect the Scenario 2 model results, and likewise, the SC1 group in the Scenario 2 model run does not reflect the Scenario 1 model results).

There was also a source group within each of the two scenario model input files named **ALL**, which consists of the summed concentration of all modeled sources. For Scenario 1, the ALL source group did not include the background concentration (which is shown in Tables 2, 3, and 4 of the AQ report as **25 µg/m**³ for the 24-hour average PM₁₀ concentration). For Scenario 2, a background concentration of **1.0 µg/m**³ was added to the ALL source group (but not to the SC2 source group), which does not account for the correct reported PM₁₀ background level in the AQ report. The modeled sources in the **SC1** source group are the following:

BLAS T	PCR SH1	VOL1	VOL2	VOL3	VOL4	PCR SH3	GCR SH2	CO5 ¹
SC10 11	CCR SH2	CO6	C07	CO8	LOA D1	LOA D2	EXC1	CO9
LOA D3	CO14	PILE 1	PILE 2	PILE 3	PILE 4	PILE 5	PILE6	PILE 7
LOA D4	LOA D5	LOA D6	LOA D7	LOA D8	LOA D9	LOA D10	LOAD 11 ²	LOA D13
PILE 12	PILE 13	PILE 14	LOA D15	HAU L1	HAU L2	HAU L6	TLOA D1	TLOA D2
TLOA D3	TLOA D4	TLOA D5	TLOA D6	TLOA D7	TLOA D8	TLOA D9	HAUL 5	GEN 3
GEN 4								

The modeled sources in the **SC2** source group are the following:

BLAS T	PCR SH2	GCR SH1	CO1	SC89	CCR SH1	CO2	CO3	CO4
PCR SH3	GCR SH2	CO5	SC10 11	CO6	C07	CO8	LOAD 1	LOA D2
EXC1	LOA D11	CCR SH2	PILE 8	PILE 9	PILE 10	TLOA D12	PILE1 1	LOA D13
LOA D12	PILE 12	PILE 13	PILE 14	LOA D15	HAU L3	HAUL 4	HAUL 5	HAUL 6
TLOA D2	TLOA D11	GEN 1	GEN 2	GEN 3	GEN 4			

Upon examination of the source descriptions in the SC1 model input control file as well as the listing of the sources in Appendices A through E in the AQ report, it appears that the following sources (with non-zero PM_{10} emissions) are actually part of Scenario 1, but were left out of the SC1 source group in the model input control file:

LOA D16	PCRS H4	GCR SH3	CO1 5	SC12 13	CO16	CO17	CO1 8	PILE 16
CCR SH4	PILE1 7	PILE1 8	LOA D17	GEN 5	GEN 6	HAUL 3	HAU L6	HAU L7
TLOA D12	TLOA D10	HAUL 9	CCR SH5	PILE 15				

¹ Source CO5 was included in source group SC1 but has zero emissions for Scenario 1.

² Source LOAD11 was included in source group SC1 but has zero emissions for Scenario 1.

The 23 omitted sources from source group SC1 account for 17.4% of the total PM_{10} emissions for all Scenario 1 modeled sources.

Similarly, the following sources (with non-zero PM_{10} emissions) appear to be part of Scenario 2, but appear to have been left out of the SC2 source group in the model input control file:

HAUL	HAUL	TLOA	CCR	PILE		
1	8	D1	SH3	19		

The five omitted sources from source group SC2 account for 24.5% of the total PM_{10} emissions for all Scenario 2 modeled sources.

If all the 23 omitted sources for Scenario 1 and the 5 omitted source for Scenario 2 (as identified above) were included in the SC1 and SC2 source groups, respectively, the SC1 and SC2 source groups would exactly match the ALL source groups in the two scenario model runs (and therefore there would be no need to specify the SC1 and SC2 source groups).

The input control files also include a number of diurnal (hour of day) and seasonal profiles for many of the constant modeled sources, which allow the user to scale the emission rates using scale factors (typically between 0 and 1) to restrict or reduce emissions during certain hours of the day or during some of the months during the year. For example, emissions due to blasting at the workface (source: BLAST) have been completely turned off during night hours throughout the year, restricting emissions from those sources to between 7 am and 7 pm for both modeled scenarios. For source PCRSH2 and 19 other sources³, emissions (for both scenarios) are restricted to between 7 am and 11 pm throughout the year. Under Scenario 1, for HAUL2 and 12 other sources (including all nine TLOAD3 to TLOAD11 sources, HAUL5, HAUL6, and HAUL8), emissions occur 24 hours per day, however emissions from these 13 sources during January. February, and December are scaled by 0.75. Under Scenario 2, for sources HAUL5, HAUL6, HAUL8, TLOAD11, and TLOAD12, emissions occur 24 hours per day, however monthly emission scaling factors vary from 0.25 (January) to 0.95 (August). For source GCRSH2 and 10 other sources⁴ (for both scenarios), emissions do not occur at all during January, February, and December, and are restricted to between 7 am and 7 pm during the other 9 months of the year. Emissions from source HAUL1 are zero for all hours of the day during January, February, and December under Scenario 2, and are scaled by 0.75 between 7 am and 7 pm (and are zero between 7 pm and 7 am) during those three months. During the other nine months of the year, emissions from HAUL1 for both scenarios are restricted to between 7 am and 7 pm. All other modeled sources with constant emissions operate (and therefore have emissions) during all hours of the year.

Source parameters for all modeled sources are specified in the AERMOD input control file. These source parameters were tabulated in Appendix F of the AQ report. However, the Appendix F table is missing entries for the following sources: CCRSH3-5, GCRSH3, CO15-18, SC1213, PCRSH4, LOAD16-17, PILE16-19, and GEN5-6. Also, there are a number of sources listed in Appendix F as being emitted under only Scenario 1 or Scenario 2, but are actually emitted under both scenarios. More importantly, a number of base elevations for Scenario 1 sources appear to have been entered incorrectly. The base elevations for the modeled sources range from 230 m to 342 m, which must be specified in the AERMOD input control file. The

³ The 19 other source are: PCRSH4, CO1-4, CO15-18, SC89, SC1213, CCRSH1, CCRSH3-5, HAUL4, HAUL7, GCRSH1, and GCRSH3.

⁴ The 10 other sources are: CO5-8, SC1011, CCRSH2, GEN3-4, TLOAD12, and HAUL3.

	initial pollutant release elevation within the AERMOD model's computation of concentration impacts is computed as the base (ground) elevation plus the release height (above the ground). For Scenario 1, the base elevations for all units of line sources HAUL1, HAUL2, HAUL5, HAUL7, and HAUL9 ⁵ were specified as 0.0 m, which will cause the modeled concentrations at the receptors, which are located at elevations ranging from 229 m to 345 m, to be incorrectly computed. ⁶ Most importantly, the modeled concentrations that are in the model output files for the ALL source group or the SC1 source group (for the Scenario 1 model run) or the SC2 source group (for the Scenario 2 model run) DO NOT AGREE with the results shown in Tables 3 and 4 of the AQ report. For example, for Scenario 1, the model output file shows a maximum 24-hour average PM ₁₀ concentration (without background) of 21.74 µg/m ³ for the ALL source group. The AQ report (Table 3) shows a maximum 24-hour average PM ₁₀ concentration (at the residential receptor located at UTM: 584832, 4821596) of 54 µg/m ³ (without background). For Scenario 2, the model output file shows a maximum 24-hour average PM ₁₀ concentration of 20.42 µg/m ³ for the ALL source group (with background of 1 µg/m ³). The AQ report (Table 3) shows a maximum 24-hour average PM ₁₀ concentration of 20.42 µg/m ³ (with background of 1 µg/m ³). The AQ report (Table 4) shows a maximum 24-hour average PM ₁₀ concentration of 20.42 µg/m ³ (with background) and 92 µg/m ³ (with background). Similar observations (modeling file output concentrations not matching the AQ report values in Table 3 and 4) were also made for the other modeled pollutants. ⁷ For example, the Scenario 1 model output files show a maximum 1-hour average NO ₂ concentration of 168.6 µg/m , (without background), whereas the AQ report (Table 3) shows a maximum 1-hour average NO ₂ concentration of 168.6 µg/m ³ (mithout background), whereas the AQ report (Table 3) shows a maximum 1-hour average NO ₂ c			
3.	Many of the emission factors used to develop estimates of emission rates may not, in fact, be appropriate for the sources at the Milton Quarry facility, and could lead to significant underprediction of the air quality impacts due to the quarry's activities.	Appendices A - E	Gray Sky Solutions	Ontario Ministry of the Environment Conservand Parks ("MECP") Guideline A10 and Onta Regulation 419/05 (Local Air Quality) provide framework for conducting air quality assessmin Ontario. The U.S. EPA emission factors u
	Appendices A through E of the AQ report are emission spreadsheet tables which attempt to show the calculations of emission rates for the various operations at the quarry. For blasting operations, the number of blasts per hour and the blast surface			in the Air Quality Assessment are the <u>indust</u> <u>standard</u> in Ontario and are accepted by the MECP for air quality assessments conducted

⁵ Base elevations for HAUL8 sources were also specified as 0.0 m in the Scenario 1 model input control file, however the emissions for this source were zero.

vation ario e the ments used <u>ry</u> d		

⁶ Comparisons between the ratio of modeled maximum 24-hour PM₁₀ concentrations divided by the emission rates for sources HAUL1 and HAUL5 for Scenario 2 (modeled with base elevations ranging between 295 m and 342 m) versus Scenario 1 (modeled with base elevations = 0 m) show that the modeled concentration impacts for Scenario 2 (with appropriate elevations) were about 3 to 4 times higher than the concentration impacts for Scenario 1 (with 0 m base elevations). ⁷ The model input control files for PM (TSP), PM_{2.5}, NO₂, and silica are identical to the PM₁₀ input file, with the exception of the emission rates.

⁸ The model output files show a maximum 24-hour average PM_{2.5} concentration of **4.5 µg/m³**, (without background), whereas the AQ report (Table 3) shows a maximum 24-hour average PM_{2.5} concentration of **10 µg/m³** (at the same receptor location). The predicted maximum annual PM_{2.5} concentration in the model output file (0.86 μ g/m³) agrees with the value in Table 3 of the AQ report (1 μ g/m³).

area were combined to estimate the emission rate for each pollutant (TSP, PM10, PM2.5, and silica) using emission factors (kg/blast) from US EPA's AP-42. The data quality rating for the blasting emissions factors (from US EPA's AP-42) is C (Average). For Bulk Materials Handling (Appendix B) and Processing (Appendix C), emission rates were estimated for the various operations based on the processing rate (Mg/hour) and emission factors (kg/Mg) obtained from AP-42. The data quality ratings for material handling emission factors are all A (Excellent). The data quality ratings for processing emission factors are C (Average). D (Below Average), or E (Poor). Emission rates for Fugitive Dust from Mobile Equipment (Appendix D) and Combustion Exhaust from Mobile and Stationary Equipment (Appendix E) were estimated based on traffic volumes and vehicle emission factors (g/km) for mobile sources, and power usage (kW-hr) and emission factors (g/kW-hr) for stationary equipment. The data quality ratings for mobile source fugitive dust emission factors are B (Above Average) for PM10 and PM2.5, and C (Average) for TSP and Silica. Emission factors for mobile source exhaust were obtained from US EPA's MOVES model (no emission factor ratings are provided).

PM10 emissions that were estimated using marginal emission factor ratings (C, D, or E) account for 1.89 g/s (21%) of the total modeled PM10 total 8.83 g/s) for Scenario 1, and 1.46 g/s (42%) of the total modeled PM10 (3.45 g/s) for Scenario 2.

For most of the sources at the Milton quarry, RWDI relied on US EPA AP-42 emission factors, many of which have low data quality ratings, and some of which are not directly applicable to the source in question at the proposed facility. The AP-42 document clearly states that those emissions factors that are rated as marginal in quality (rated C, D, or E) should only be used as a last resort, if no local or site-specific data are available. It is highly recommended that source-specific emission factors should be sought, either from source testing at the facility, or from directly applicable source tests from similar nearby sources. The Milton quarry has been operating for a number of years, and site-specific source test data could have easily been obtained that would provide better emission factor estimates for materials processing operations than those from AP-42.

Although there may not be are any better (textbook) or more recent data sources for some of these activities, many of the AP-42 emission factors were obtained from old sources (over 40 years old) and are only marginally related to the activities at the Milton quarry. Using such low quality emission factors will potentially result in significantly large uncertainties in the modeled air quality impacts. A range of potential emission levels (and exposures) should be developed based on lower and upper bound emissions factors (which generally exist in AP-42 and its supporting documents). A careful review of each of the emissions factors used in the RWDI analysis should be conducted to determine those emission factors that are not representative of actual emission levels at the Milton facility, and the potential errors (and possible underprediction) due to the use of the emission factors to estimate emission levels. Source testing of existing operations at the facility should also be conducted where applicable.

Within the documentation (appendices) provided in AP-42 is important information regarding the sources of the data that were used to develop the emissions factors, including ranges of values that were obtained from source tests at various source locations. These data could be used to evaluate the potential range of emission factors that may be appropriate for the quarry and could therefore be used to develop an analysis of the uncertainty of the emissions factors and the resulting uncertainty of the modeling results (which may be considerable) that were obtained using the AP-42

under Ontario Regulation 419/05, as well a environmental assessments.

I have been practicing air quality in Ontario years, and I have never had the MECP que the use of these factors.

Furthermore, RWDI has conducted ambien monitoring programs at several aggregate Ontario. The results of these programs su the use of these factors.

Regardless, to address Dr. Gray's comme RWDI undertook an additional assessmen these emission factors were multiplied by a of 10 and showed that the predicted impact the proposed extension remain within acce levels. This is discussed further under Con 11.

No further action is required.

as	
io for 21 uestion	
ent air e sites in upport	
ents, nt where a factor cts of ceptable omment	

emissions factors. An uncertainty (sensitivity) analysis would provide a range of potential air quality concentration impacts, rather than a single estimate of the impacts.				
The emission appendices include a few notes (comments) with assumptions regarding the estimation of emission rates, but do not include the assumptions relied upon to determine activity levels. Appendices A through E of the AQ report include a number of comments addressing issues such as the assumed silica and silt content, moisture content, hours of operation, and control efficiencies. However the report does not describe the assumptions that were made to determine the activity levels for each operation, how the activity levels were estimated, and whether the assumed activity levels represent worst case conditions. In addition, emissions from existing operations at the facility versus emissions from operations associated with the proposed extension (expansion) should be clearly identified. The dispersion modeling should include emissions from both existing and proposed operations, but it is not completely apparent (upon examination of the AQ report) whether this is the case.	Appendices A - E	Gray Sky Solutions	All activity levels reflect the maximum production rates provided by CRH. The air quality assessment includes emissions from both the existing quarry operations and the proposed extension. Scenario 1 considers the continued operation of the existing Main Plant, in addition to the proposed extension. Scenario 2 replaces the Main Plant with portable plants, in addition to the proposed extension. This is now easier to follow with the simplified modelling files.	
The base elevations for five of the HAUL sources in SC1 (HAUL1, HAUL2, HAUL5, HAUL7, and HAUL9) were corrected. As expected, this change resulted in much higher modeled concentrations for SC1.		Gray Sky Solutions	Correct, these were updated, and the revised modelling provided to Dr. Gray on September 30, 2022. No further action required.	
The list of sources modeled for Scenario1 and Scenario 2 are now identical, with differences only in the emission rates (sources that are not part of either SC1 or SC2 are given zero emission rates). In the original modeling files, a number of source parameters (other than the emission rates) were different between the two scenarios; most notably, for the four HAUL sources that have non-zero emissions in both scenarios (HAUL1, HAUL3, HAUL5, and HAUL6) and for the three loader traffic sources that have non-zero emissions in both scenarios (TLOAD1, TLOAD2, and TLOAD12), the specified locations of the sources were different (with a different number of road segments) in the original modeling. For the revised modeling, the number of road segments (units), the locations, and base elevations from the original SC1 modeling were used for both the revised SC1 and SC2 modeling for these seven sources. Also, the locations, number of road segments, and base elevations for HAUL8 in the SC2 modeling were changed between the original and revised modeling (HAUL8 has zero emissions in SC1 and is therefore not part of that scenario).		Gray Sky Solutions	Correct. The revised modelling files are now easier to follow and are better aligned organizationally with the emission tables in the Appendices. The revised modelling files were provided to Dr. Gray on September 30, 2022. No further action required.	
The following tables show the PM10 emission rates (and number of road segments, or "units") for all sources with non-zero emissions in the original and revised SC1 and SC2 modeling. The values (number of units and emission rates) highlighted in red in the revised modeling tables are different than in the original modeling files (by more than just round-off differences):Table 1. Modeled PM10 Emission Rates for Scenario 1 (g/s) Original Modeling		Gray Sky Solutions	It appears that Dr. Gray has switched the headings on these tables. The revised modelled emissions rates are actually on the left for both scenarios, while the original modelled emissions rates are on the right. With respect to the differences, the emission rates actually increased in the revised modelling. A small error was noted in the average vehicle weight. As a result, the emissions are now slightly more conservative than in the original assessment. This was not noted when the updated files were	
	emissions factors. An uncertainty (sensitivity) analysis would provide a range of potential air quality concentration impacts, rather than a single estimate of the impacts. The emission appendices include a few notes (comments) with assumptions regarding the estimation of emission rates, but do not include the assumptions relied upon to determine activity levels. Appendices A through E of the AQ report include a number of comments addressing issues such as the assumed silica and sili content, moisture content, hours of operation, and control efficiencies. However the report does not describe the assumptions that were made to determine the activity levels for each operation, how the activity levels were estimated, and whether the assumed activity levels represent worst case conditions. In addition, emissions from existing operations at the facility versus emissions from operations associated with the proposed extension (expansion) should be clearly identified. The dispersion modeling should include emissions from both existing and proposed operations, but it is not completely apparent (upon examination of the AQ report) whether this is the case. The base elevations for five of the HAUL sources in SC1 (HAUL1, HAUL2, HAUL5, HAUL7, and HAUL9) were corrected. As expected, this change resulted in much higher modeled concentrations for SC1. The list of sources modeled for Scenario1 and Scenario 2 are now identical, with differences only in the emission rates (sources that are not part of either SC1 or SC2 are given zero emissions into and HAUL6) and for the three loader traffic sources that have non-zero emissions in both scenarios (HAUL1, HAUL3, HAUL5, and HAUL6) and for the three loader traffic sources that have non-zero emissions in both scenarios (HAUL1, HAUL3, HAUL5, and HAUL6) and for the three loader traffic sources that have non-zero emissions in both scenarios (HAUL1, HAUL3, HAUL5, and HAUL6) and for the three loader traffic sources that have non-zero emissions in both scenarios (HAUL1, HAUL3, HAUL5, and	emissions factors. An uncertainty (sensitivity) analysis would provide a range of potential air quality concentration impacts, rather than a single estimate of the impacts. The emission appendices include a few notes (comments) with assumptions regarding the estimation of emission rates, but do not include the assumptions relied upon to determine activity levels. Appendices A through E of the AO report include a number of comments addressing issues such as the assumptions. In addition, emissions from existing operation, now the activity levels were estimated, and whether the assumed activity levels regresent worst case conditions. In addition, emissions from existing operations at the facility versus emissions from bott existing and proposed operations, but it is not completely apparent (upon examination of the AQ report) whether this is the case. The base elevations for five of the HAUL sources in SC1 (HAUL1, HAUL2, HAUL5, HAUL2, and HAUL9) were corrected. As expected, this change resulted in much higher modeled concentrations for SC1. The list of sources modeled for Scenario1 and Scenario 2 are now identical, with differences only in the emission rates (sources that are not part of either SC1 or SC2 are given zero emission rates). In the original modeling files, a number of source parameters (other than the emission rates) were different between the two scenarios; most notably, for the four HAUL sources that have non-zero emissions in both scenarios (HAUL1, HAUL2, HAUL5, and HAUL6) and for the three loader traffic sources that have non-zero emissions in both scenarios (HAUL1, HAUL2, HAUL5, and HAUL6) and GCL modeling for these seven sources. Also, the locations, and base elevations from the original modeling. For the revised modeling, the number of road segments (units), the locations, and base elevations from the original and revised SC1 and SC2 modeling the assert sources is condent the original modeling. For the revised modeling, the number of road segments, on the original and revised SC1 and SC2 mode	emissions factors. An uncertainty (sensitivity) analysis would provide a range of potential air guality concentration impacts, rather than a single estimate of the impacts. Appendices The emission appendices include a few notes (comments) with assumptions relied upon to determine activity levels. Appendices A through E of the AO report include a number of comments addressing issues such as the assumed silica and sili content. moisture content, hows of operation, and control efficiencies. However the report does not describe the assumptions that were made to determine the activity levels for each operation, how versus emissions from original and proposed operations. The versus emissions from operation associated with the proposed extension (evapaneion) should be clearly identified. The dispersion modeling should include emissions from operated, and whether the assumptions and proposed operations. How yere corrected. As expected, this change resulted in much higher modeled concentrations for SC1. Gray Sky Solutions The list of sources modeled for Scenario1 and Scenario 2 are now identical, with differences only in the emission rates (sources that are not part of either Sciultions Stociates). In the original modeling files, a number of source parameters (other than the emissions rates) were different between the two scenarios; most notably, for the fourt NALUS, and HAULS, and HAULS and Case are diver are diver the modeling shouse modeling that are not parameters (butter than the unber of road segments) in the original modeling. To the revised Modeling for these seven sources. Also, the locations, and base elevations for MAULS averse massions in both scenarios (HAUL 1, HAULS, and HAULS, and HAULS) and For the revised Modeling for these seven sources. Also, the locatinty is addifferent to the scenarios (HAULA)	printsions factors. An uncertainty (sensitivity) analysis would provide a range of pointial air quality concentration impacts, rather than a single estimate of the impacts. Appendices A through E of the AC report include a few notes (comments) with assumptions regarding the setimation of emission rates, but do not include the assumptions three masks of determine the activity levels. Appendices A through E of the AC report include a number of comments addressing discuss such as and all conternin, mosture content, hours of operation, and control efficiencies. However the report does not describe the assumptions three masks of determine the activity levels represent the activity levels are estimated and where the reports of describe the assumptions three markets of the AC report include a number of cost describe the assumptions from operations associated with the reproposed operation. Neuro direction is negative associated with the proposed operations. The issue and a sociated with the proposed operations of the activity levels are estimated in proposed operations. Just is not completely apparent (upon examination of the ACI report) whether this is the case. Scenaral 1 considers the with portable description. Neuro direction is required. The base elevalaries for five of the HAUL sources in SC1 (HAUL1, HAUL2, HAUL5, HAUL5, and HAUL9) were carrected. As expended, this change resulted in much higher modeled concentrations for SC1. No further action required. The list of sources modeled for Scenario 1 and Scenario 2 are new identical, with differences on tobit, for the original modeling files. a number of road segments (unb), the contrastor required. No further action required. The list of sources modeled for Scenario 1 and Scenario 2 rate were different tobith or fore ad segments (unb), the contrastor required sc

reflect the maximum production	
sessment includes emissions sting quarry operations and the ion.	
ders the continued operation of Plant, in addition to the ion.	
ces the Main Plant with portable to the proposed extension.	
er to follow with the simplified	
is required	
ere updated, and the revised ed to Dr. Gray on September 30,	
required.	
ised modelling files are now nd are better aligned with the emission tables in the e revised modelling files were aray on September 30, 2022.	
required.	
r. Gray has switched the tables. The revised modelled are actually on the left for both the original modelled emissions right.	
ne differences, the emission rates d in the revised modelling. A loted in the average vehicle ult, the emissions are now servative than in the original	
ed when the updated files were	

Source	Constant	Variable	Source	Constant	Variable
BLAST	1.00000	5 -yr Average	BLAST	1.00000	5 -yr Average
PCRSH1	0.04300		PCRSH1	0.04290	
GCRSH2	0.01300		GCRSH2	0.01250	
CO6	0.00053		CO6	0.00053	
C08	0.00053		C08	0.00053	
SC1011	0.05100		SC1011	0.05140	
LOAD1	0.00630	0.03979	LOAD1	0.00625	0.03979
LOAD2		0.03979	LOAD2		0.03979
EXC1		0.03979	EXC1		0.03979
CO14		0.08215	C014		0.08215
PILE1		0.04196	PILE1		0.04196
PILE3		0.01579	PILE3		0.01579
PILE4		0.01579	PILE4		0.01579
PILES		0.01579	PILES		0.01579
PILE7		0.04196	PILE7		0.04196
LOAD4 LOAD5		0.02569	LOAD4 LOAD5		0.02569
LOAD6		0.02572	LOAD6		0.02572
LOAD7		0.02572	LOAD7		0.02572
LOAD9		0.02572	LOAD9		0.02572
LOAD10		0.02572	LOAD10		0.02572
PILE12		0.001207	PILE12		0.00192
PILE13		0.00192	PILE13		0.00192
LOAD15		0.01742	LOAD15		0.01742
PILE11		0.01267	PILE11		0.01267
VOL1	0.24000	0.20183	VOL1	0.23600	0.20183
VOL2	0.16000		VOL2	0.16100	
HAUL1 (H1): 227 units HAUL2 (H2): 300 units	1.63440 1.80000		HAUL1 (H1): 227 units HAUL2 (H2): 300 units	1.62532 1.59300	
HAUL3 (H3): 15 units	0.07350		HAUL3 (H3): 15 units	0.07305	
HAUL5 (L002): 64 units	0.08320		HAUL5 (L002): 64 units	0.07104	
TLOAD2 (TL2): 5 units	0.09000		TLOAD2 (TL2): 5 units	0.09050	
TLOAD12 (TL12): 3 units	0.02370		TLOAD12 (TL12): 3 units	0.02364	
TLOAD3 (TL3): 3 units TLOAD4 (TL4): 3 units	0.02430		TLOAD3 (TL3): 3 units TLOAD4 (TL4): 3 units	0.02433 0.02433	
TLOAD5 (TL5): 3 units	0.02430		TLOAD5 (TL5): 3 units	0.02433	
TLOAD6 (TL6): 3 units	0.02430		TLOAD6 (TL6): 3 units	0.02433	
TLOAD8 (TL8): 4 units	0.02430		TLOADS (TLS): 3 units	0.02433	
TLOAD9 (TL9): 3 units	0.02430		TLOAD9 (TL9): 3 units	0.02432	
VOL3 VOL4		0.48148	VOL3 VOL4		0.48148
HAUL6 (H6): 106 units	0.21200		HAUL6 (H6): 106 units	0.16218	
GEN3 GEN4	0.03300		GEN3 GEN4	0.03330	
PILE15	0.03300	0.02068	PILE15	0.00000	0.02068
LOAD16	0.06000	0.02068	LOAD16	0.06000	0.02068
GCRSH3	0.02900		GCRSH3	0.02870	
CO15	0.00510		CO15	0.00511	
CO16	0.21000		CO16	0.21100	
C017	0.00510		C017	0.00511	
CO18 PILE16	0.00510	0.00347	CO18 PILE16	0.00511	0,00347
CCRSH4	0.03300	5.00347	CCRSH4	0.03320	0.0004/
PILE17		0.00347	PILE17		0.00347
LOAD17		0.00347	LOAD17		0.00347
GEN5	0.04400		GEN5	0.04440	
GEN6 HAUL7 (H7): 206 units	0.04400		GEN6 HAUL7 (H7): 206 units	0.04440	
TLOAD10 (TL10): 3 units	0.02850		TLOAD10 (TL10): 3 units	0.02853	
CCRSH5	0.01700		CCRSH5	0.01690	
HAUL 9 (L001): 66 units	0.25080		HAUL 9 (L001): 66 units	0.22176	
SUM, CONSTANT	6.981	- 000000	SUM, CONSTANT	6.669	
SUM, VARIABLE (hourly)	9.138	2.156	SUM, VARIABLE (hourly)	8.826	2.156
Table 2 M	ndalad		mission Dat	as for 9	consria
				- 101 5	
Original Mo	deling			R	evised I

Source	Constant	Variable	Source	Constant	Variable
		5 -yr Average			5 -yr Average
BLAST	1.00000		BLAST	1.00000	
PCRSH2	0.06000		PCRSH2	0.06000	
PCRSH3	0.01300		PCRSH3	0.01250	
GCRSH1	0.02900		GCRSH1	0.02870	
GCRSH2	0.01300		GCRSH2	0.01250	
CO1	0.00510		CO1	0.00511	
CO2	0.00510		CO2	0.00511	
CO3	0.00510		CO3	0.00511	
CO4	0.00510		CO4	0.00511	
005	0.00110		005	0.00106	
005	0.00110		005	0.00100	
C00	0.00053		007	0.00053	
07	0.00053		07	0.00053	
08	0.00053		008	0.00053	
SC89	0.21000		SC89	0.21100	
SC1011	0.05100		SC1011	0.05140	
CCRSH1	0.03300		CCRSH1	0.03320	
CCRSH2	0.00630		CCRSH2	0.00625	
LOAD1		0.00733	LOAD1		0.00733
LOAD2		0.00733	LOAD2		0.00733
EXC1		0.00733	EXC1		0.00733
LOAD 10	1.00000				
LOAD13		0.00826	LOAD13		0.00826
LOAD11		0.02068	LOAD11		0.02068
PILE12		0.00207	PILE12		0.00207
PILE13		0.00207	PILE13		0.00207
PILE14		0.00207	PILE14		0.00207
LOAD15		0.00812	LOAD15		0.00812
PILE8		0.00347	PILE8		0.00347
PILE9		0.00347	PILE9		0.00347
PILE10		0.00347	PILE10		0.00347
100012		0.00347	104012		0.00347
DUC11		0.02407	DU 511		0.02407
PILEII		0.00769		0.00000	0.00769
HAUL1 (H1): 227 units	1.63440		HAUL1 (H1): 219 units	0.22119	
HAUL3 (H3): 15 units	0.24000		HAUL3 (H3): 15 units	0.23850	
HAUL4 (H4): 61 units	0.32940		HAUL4 (H4): 61 units	0.33123	
HAUL5 (L0004): 64 units	0.08320		HAUL5 (L0004): 36 units	0.03247	
TLOAD1 (TL1): 5 units	0.09000		TLOAD1 (TL1): 14 units	0.19180	
TLOAD2 (TL2): 5 units	0.09000		TLOAD2 (TL2): 13 units	0.18200	
TLOAD11 (TL11): 9 units	0.02880		TLOAD11 (TL11): 9 units	0.04977	
TLOAD12 (TL12): 3 units	0.02370		TLOAD12 (TL12): 7 units	0.03143	
HAUL6 (H6): 106 units	0.19080		HAUL6 (H6): 109 units	0.03652	
GEN1	0.04400		GEN1	0.04440	
GEN2	0.04400		GEN2	0.04440	
GEN3	0.03300		GEN3	0.03330	
GEN4	0.03300		GEN4	0.03330	
HALLIS (10005): 226 unite	0.45200		HALLIS (10005): 221 unite	0.39330	
DILE19	0.45200	0.02069	DI 519	0.33330	0.02059
CORGUE	0.01700	0.02068	PILET2	0.01000	0.02068
CCK5H3	0.01/00		CCK5H3	0.01690	
				10000	
SUM, CONSTANT	5.77169		SUM, CONSTANT	3.31924	
SUM, VARIABLE (hourly)		0.12809	SUM, VARIABLE (hourly)		0.12809

8.	As shown in Table 2, above, source LOAD10 was included in the revised SC2 modeling, with a constant PM10 emission rate of 1.00 g/s. The LOAD10 source was modeled in SC1 with hourly variable emissions (with a 5-year average emission rate of 0.02752 g/s), and was not included in the original SC2 modeling. It appears that this source was incorrectly included (i.e., modeled with a non-zero emission rate) in the revised SC2 modeling and likely should not have been included in the revised SC2 modeling.	Gray Sky Solutions	 As noted above, it appears that Dr. Gray he switched the headings on these tables. Dr. Gray is correct that source LOAD10 sh have been assigned an emission rate of 0 Scenario 2. This results in a more conservative estimation impacts, although this source is not a major contributor to the overall off-site predicted if for TSP and PM10. This impact of this is seen most clearly in t PM2.5 and silica results for Scenario 2, mathe results for these contaminants even more conservative than for TSP and PM10. No additional action is required.
9.	For the revised SC1 modeling, four of the HAUL sources had increased PM10 emission rates (relative to the original modeling, marked in red in Table 1). The emissions rate increases (HAUL1: 13% increase, HAUL5: 17%, HAUL6: 31%, and HAUL9: 13%) accounted for an overall increase of ALL SC1 emissions from 8.83 g/s to 9.14 g/s . For the revised SC2 modeling, four of the HAUL sources had increased PM10 emission rates and four of the TLOAD sources had decreased PM10 emission rates (relative to the original modeling, marked in red in Table 2). The emissions rate increases (HAUL1: 639% increase, HAUL5: 156%, HAUL6: 422%, HAUL8: 15%), and emission rate decreases (TLOAD1: 53% decrease, TLOAD2: 51%, TLOAD11: 42%, and TLOAD12: 25%) together accounted for an overall increase of ALL SC2 emissions (including the LOAD10 source, as described in point 4, above; with a revised PM10 emission rate of 1.00 g/s) from 3.45 g/s to 5.90 g/s . It is unclear as to why the revised modeling had increased emission rates for the four SC2 TLOAD sources, which resulted in a 3.5% increase in overall (all source) PM10 emissions for SC1 and a 71.0% overall PM10 emissions would have been 42%).	Gray Sky Solutions	 The additional action is required. This is correct. The average vehicle rates corrected for these sources however this wexplicitly noted in discussions with Dr. Gray which was an oversight. The original modelling used 28.1 tons for h trucks. The correct vehicle average weight should be 37.5 tons. The revised emission estimates and mode are therefore more conservative.
10.	The original modeling was performed using hourly meteorological ("met") data that RWDI labeled as "TORONTO_CROPS" (provide by MECP) which was described by RWDI as a "very conservative meteorological data set". In the email I received from Brian Sulley (RWDI) with the revised modeling files, he indicated that "The MECP 'Crops' data set is meant for open areas, and provides very conservative results compared to the other MECP data sets." He also stated that: "With the corrections made to Scenario 1, that high level of conservatism was no longer suitable." In other words, when the errors in base elevation were corrected in the SC1 modeling, the model results no longer resulted in predicted concentrations that were under the acceptable threshold levels (for example, the AAQC criteria level for 24-hour PM10 of 50 µg/m ³ was exceeded). Therefore, the revised modeling was performed using a different set of met data, labeled as "TORONTO_FOREST", which was justified based on the fact that: "The lands surrounding the quarry are heavily forested, in some cases for several kilometers. In other directions, you still have several hundred metres of forest." While it is true that the land to the north and south of the Milton facility is forested for several kilometers, the forest only extends roughly 2 kilometers to the east and west of the quarry facility.	Gray Sky Solutions	 Dr. Gray is incorrect. Air quality assessments in Ontario must be conducted in accordance with MECP Guid A11, the Air Dispersion Modelling Guidelin Ontario. Ontario's MECP does not agree with the g provided in the AERMET user's guide. The AERMOD dispersion model is highly sensi surface roughness, and the Ontario MECP requires that meteorological data sets be s based on the conditions at the subject site. Section 6.3.1 of MECP Guideline A-11 is completely clear on this:

as	
ould g/s for	
e of r mpacts	
he Iking bre	
were vas not /,	
ighway t	
lling	
eline e for	
uidance e	
tive to elected	

Comparison of the "forest" met data with the "crops" met data show different values for a number of hourly micrometeorological values, including the sensible heat flux(H, W/m^2), surface friction velocity (u*, m/s), Monin-Obukhov length (L, m), convective velocity scale (w*, m/s), height of convectively-generated boundary layer (Zic, m), vertical potential temperature gradient above Zic (VPTG, K/m), height of mechanicallygenerated boundary layer (Zim, m), surface roughness length (Zo, m), and Albedo (r) (values of w^{*}. Zic. and VPTG are only used during davtime hours when H is positive and L is negative).⁹ The important difference is that the boundary layer heights (mixing depths) are much higher in the forest met data (relative to the crops met data), especially the mechanically-generated boundary layer heights during overnight and early morning hours, which are typically 4 to 10 times as high (the ratio is higher during warmer periods). The daytime boundary layer heights, which tend to be much higher than early morning boundary layer heights, are typically 2.5 to 3 times as high for the forest met data as compared to the crop met data. The effect of this difference in the AERMOD dispersion model is that predicted concentration impacts during hours with higher mixing depths (forest met data) will be much lower than hours with lower mixing depths (crop met data).¹⁰ The following table presents a sample of the comparison between the two met data sets for a few hours of the five-year met data:¹¹ Table 3. Comparison of Met Data Between CROPS and FOREST Met Data Sets

year	month	day	hour	н	u*	w*	VPTG	Zic	Zim	L	zo	Во	r	WS	WD	TEMP	CCVR
CROPS																	
96	1	1	1	-21.5	0.212	-9.000	-9.000	-999	234	49.3	0.097	0.5	1.00	2.6	41	273.1	10
96	1	2	11	1.8	0.493	0.225	0.012	225	829	-5948.7	0.097	0.5	0.64	5.7	5	259.9	9
96	1	2	12	5.3	0.494	0.368	0.012	330	833	-2001.3	0.097	0.5	0.62	5.7	11	259.9	9
97	7	5	6	-10.5	0.220	-9.000	-9.000	-999	248	90.0	0.237	0.6	0.48	2.1	266	283.8	2
97	7	5	13	190.0	0.445	2.041	0.009	1589	711	-40.9	0.237	0.6	0.18	3.6	8	297.0	5
FOREST																	
96	1	1	1	-56.5	0.556	-9.000	-9.000	-999	994	339.7	0.900	0.5	1.00	2.6	41	273.1	10
96	1	2	11	6.6	0.948	0.394	0.007	330	2276	-8888.0	0.900	0.5	0.51	5.7	5	259.9	9
96	1	2	12	11.3	0.949	0.477	0.006	338	2222	-6672.3	0.900	0.5	0.48	5.7	11	259.9	9
97	7	5	6	-36.5	0.842	-9.000	-9.000	-999	1852	1449.2	1.300	0.3	0.44	2.1	266	283.8	2
97	7	5	13	123.0	0.742	1.448	0.009	874	1532	-294.4	1.300	0.3	0.14	3.6	8	297.0	5

There are two types of meteorological data that are input to the AERMET preprocessor which develops the met data that are input to AERMOD. The first is hourly surface data which are usually measured at a nearby airport tower (the surface met data that were used for this analysis were collected at the Toronto Airport).¹² The second is upper air (radiosonde) data which include wind and temperature measurements at various heights, and are collected from a sparse network of upper air stations (the upper air data for this analysis appear to have been collected at Buffalo, NY). In addition, surface characteristics (land use data) are input to AERMET, which specify (1) the surface roughness (or roughness length, which is a measure of the roughness of the surface of the ground, equal to the distance above ground level where the wind speed theoretically should be zero), (2) Bowen ratio (ratio of heat flux to moisture flux near the surface), and (3) Albedo (the proportion of light reflected from the surface), and are to be measured at the *same location* as the hourly surface met data. These data are combined within AERMET to construct the micrometeorological data, including the vertical mixing parameters, discussed in the previous paragraph.

The AERMET User's Guide indicates very clearly that the selection of surface land use data should be specified to correspond with the location the surface meteorological tower, i.e., the location where the surface met data is collected, and NOT the location of the modeled pollutant source. This is due, for example, to the fact that the surface

meteorological data sets were gener the 3 stage AERMET process for three different wind independent surface categories, called "URBAN", "FORES and "CROPS". These three categorie allow users to choose the file that mo accurately reflects the land use cond in the vicinity of their site. For each these three surface types, the minist a weighted average of surface param for the typical mix of land uses seen Ontario for each land use class cons in the category. For example, the sur characteristics in the FOREST region data sets were calculated assuming typical forests in Ontario are compris mix of 50% deciduous and 50% coni trees."

While the MECP has since added a "SUBUF data set, it is not pertinent to this discussion.

Therefore Dr. Gray's comments are not cons with the MECP's Air Dispersion Modelling Guideline for Ontario and therefore do not represent the correct approach.

The use of the MECP "FOREST" data set is the correct approach, based on a review of t kilometre radius from the centre of the site.

The alternative modelling results were provid TSP only as they are for comparative purpos only.

Including modelling for PM10, PM2.5, silica NO2 would not provide any new or useful information that can not already be gleaned the TSP results.

The revised modelling, as presented, compli Ontario's official modelling guidance, and is therefore appropriate.

No further action is required.

ated by ee	У	
ST" es/files ost <u>litions</u> of	3	
ry used neters in idered rface nal that sed of a ferous	d I a	
RBAN"	,	
sistent		
indeed the 3-	d	
ded for ses	r	
and		
from		
ies with	h	

⁹ The hourly wind speeds (WS, m/s), wind directions (WD, degrees), ambient temperatures (TEMP, K), and percent cloud cover (CCVR, tenths) are identical between the two met data sets. ¹⁰ The mixing depth essentially acts as a barrier to vertical transport, so that a lower mixing depth will cause less vertical mixing of pollutant emissions, resulting in higher predicted concentrations.

¹¹ Values of -9.000 for w* and VPTG and values of -999 for Zic represent missing data.

¹² There is also an option to input one-minute wind data to supplement the hourly surface wind data.

	roughness is u tower and not a data were colle Milton quarry. forest or signifit therefore not b surface roughr mixing depths) dispersion con more appropria The revised se revised emissie (rather than the performed for and PM2.5 usi The alternative sources and T met data with t 106 units, each each of the 100 a TSP emissio had a TSP em revised SC1 m alternative CR sources and T met data with t 106 units, each each of the 100 a TSP emissio had a TSP em revised SC1 m alternative CR sources and T met data with t 106 units, each each of the 100 a TSP emissio had a TSP em revised SC1 m each of the 100 a TSP emissio had a TSP em	ised to vertically of at the site of the ected at the Toro The area surrou icant vegetation. The modeled with f ness values), and and the resulting ditions at the Mill ate data set to us et of modeling file on rate data (as set on rate data set to us et of modeling file on rate data set to us et of modeling file on rate data (as set on color on c	extrapolate wind pollutant emissio nto Airport, locate nding the airport The meteorologic orested surface of it is expected the g vertical dispersi- ton quarry site. The for modeling di s included an alter shown in Table 1 lata). However, the ERMOD model un the tata (the resu- ng for SC1 provide s as in the revised For the SC1 CRC ssion rate of 0.01 the revised SC1 g/s (for a total of 213 g/s in the SC e FOREST met of s as in the revised For the SC1 CRC ssion rate of 0.01 the revised SC1 g/s (for a total of 213 g/s in the SC e FOREST met of the revised SC1 g/s (for a total of 213 g/s in the SC e FOREST met of the revised SC1 g/s (for a total of 213 g/s in the SC e FOREST met of the revised SC1	speeds which ar ns. The hourly s ed approximately is relatively flat a cal conditions at conditions (which at the boundary ion at the airport Therefore, the cri- spersion of emis ernative modelin , above), but usi his alternative modelin , above), but usi his alternative modeling dits are shown be ded by RWDI include and SC1 modeling (Wth 1.484 g/s). Also C1 CROPS model for a total modeling (with 1.484 g/s). Also C1 CROPS model for a total modeling (with 1.484 g/s). Also C1 CROPS model and a sligh modeling (with 1.484 g/s). Also C1 CROPS model and a sligh modeling (with 1.484 g/s). Also C1 CROPS model and a sligh modeling (with 1.484 g/s). Also	re measured at surface meteoro y 30 km ENE of and open with li the airport sho h have much hig layer heights (a t will be similar t ops met data is ssions at the qu ng case for SC1 ing the CROPS nodeling run wa modeling files elow, in Table 4 cluded an identic g using the FOF the HAUL6 sou I of 1.060 g/s), FOREST met d o, the CCRSH5 eling, whereas f atly different TSI d an identical s g using the FOF the HAUL6 sou I of 1.060 g/s), FOREST met d o, the CCRSH5 eling, whereas f atly different TSI d an identical s g using the FOF the HAUL6 sou I of 1.060 g/s), FOREST met d o, the CCRSH5 eling, whereas f atly different TSI have used iden	the met blogical f the ittle or no uld gher and to the to the tarry. with the met data is only for PM10 l). cal set of REST rce had whereas lata) had source the P The et of REST rce had whereas lata) had source the P The et of REST rce had whereas lata) had source the P The et of REST rce had whereas lata) had source the P The et of REST rce had whereas lata) had		
11.	In my earlier re included in the factors (taken revised modeli TSP emission uncertainty in t	eview of the RWE air quality asses from US EPA's A ing files included rates for many of the emission fact	DI modeling, I had sment due to the .P-42) were rated a second alterna f the sources wer ors. The emissio	d suggested that a fact that a num d as marginal or tive modeling ru re multiplied by t on rates for the fo	t a sensitivity ar ber of the emise below. The set in for SC1 in wh en to account fo ollowing source	nalysis be sion t of nich the or the s were	Gray Sky Solutions	This additional analysis was done purely for benefit and interest of Dr. Gray. This appro inconsistent with other air quality assessme conducted by RWDI and other firms in Onta hundreds of Aggregate Resource Act licens application and Environmental Compliance Approval applications spanning decades.
	multiplied by te	en in the sensitiv	ity modeling:					The use of these factors is the industry stan
	PCRSH1	PCRSH3	GCRSH2	CO6	CO7	CO8		in Ontario and is approved and accepted by
	SC1011	CCRSH2	VOL1	VOL2	PCRSH4	GCRS		MECP. To RWDI's knowledge, the MECP I
	The alternative	e sensitivity mode	ling files only inc	luded modeling	for TSP. I ran f	the		MECP ever asked for additional analysis of nature.
	emissions rate are shown belo	s for the 18 sources of the revision of the re	ces listed above	unchanged in th	the modeling	, results		Data quality ratings for air quality assessme Ontario are normally determined using guid in MECP Guideline A10: Procedure for Prep an Emission Summary and Dispersion Mod
	Likewise, the e	emission rates for	all sources with	hourly variable	TSP emission ra	ates		Report.

y for the oproach is sments Ontario for cense nce s.	
standard d by the CP has the s of this	
sments in guidance Preparing Vodelling	

were unchanged in the sensitivity modeling. However, there are two (hourly constant) sources in which the emission factors used to estimate the emission rates were also marginal (in addition to the 18 sources listed above): BLAST and CCRSH5. These two sources should also have been included in the set of sources multiplied by ten in the sensitivity modeling. The 18 sources that were multiplied by ten in the sensitivity modeling together account for 0.88029 g/s in the revised SC1 PM10 modeling, which were therefore increased to 8.8029 g/s in the sensitivity modeling. This resulted in an increase of the modeled PM10 emissions for ALL sources from 9.138 g/s (revised PM10 modeling) to 17.061 g/s (sensitivity PM10 modeling).	Based on MECP Guideline A10, the only U.S. EPA emission factors ranked as marginal or below are the aggregate processing sources. As a result, only the emission rates for processing sources were scaled up by a factor of 10. In accordance with MECP Guideline A10, the emission estimates for blasting, material handling, paved and unpaved roadways have a data quality rating of "average" or better. Therefore, these estimates were not adjusted. Dr. Gray appears to be incorrect with respect to source CCRSH5 (Cone Crusher - Portable Plant 3) This was indeed scaled up by a factor of 10 in the sensitivity analysis. As noted in the response to Item 10, TSP provides a suitable surrogate for a comparative analysis. There was no benefit to conducting the same analysis for PM10 or other contaminants, especially since the modelling showed predicted impacts well within Ontario's benchmarks. No further action is required.
12. Table 4, below, shows the results of the PM10, PM2.5, and TSP modeling for the original modeling, the revised modeling and the two alternative cases: (1) using CROPS met data and (2) sensitivity model runs (I obtained from RWDI the modeling files for the four original cases, the four revised cases using forest met data, the TSP SC1 revised case using forest met data. ¹³ I independently ran the model for the PM10 SC1, PM10 SC2, and PM2.5 SC1 revised cases using crops met data, and the two PM10 SC1 revised SENS cases). Table 4. Model Results Medate Revised seases using crops met data, and the two PM10 SC1 revised SENS cases). Table 5. Model Results Medate Revised Sease using crops are table at a and the two PM10 SC1 revised SENS cases). Table 4. Model Results Medate Revised Sease using crops are table. Sease with the table of the two PM10 SC1 revised SENS cases). Table 5. Model Results Medate Revised Sease using crops are table. Sease with the two PM10 SC1 revised SENS cases (I revised for sease transitions) increased from 8.31 to 3.14 g/s Sc1 evised for sease 17.16 25 32.16 50 HALL hts fixed, emissions increased from 8.31 to 3.14 g/s Sc1 evised for sease 11.13.0 25 44.88 50 Sc1 evised form 8.31 to 3.14 g/s Sc2 evised forms 1.13.0 25 44.88 50 Sc1 evised form 8.31 to 3.14 g/s Sc2 evised forms 1.13.0 25 44.88 50 Sc1 evised form 3.45 to 5.30 g/s Sc2 evised forms 1.13.0 25 44.88 50 Sc1 evised form 3.45 to 5.30 g/s Sc2 evised forms 1.13.0 31 6.5 17.46 7.76 27 8.8 v/s 14MUL sources located at 0 ht (incorrect) Sc1 evised forms 1.13 1.3 6.5 17.46 7.76 27 8.8 v/s 14MUL sources located at 0 ht (incorrect) Sc1 evised forms 1.13 1.3 6.5 17.46 7.76 27 8.8 v/s 14MUL sources located at 0 ht (incorrect) Sc1 evised forms 1.13 1.3 6.5 17.46 7.76 27 8.8 v/s 14MUL sources located at 0 ht (incorrect) Sc1 evised forms 1.13 1.3 6.5 17.46 7.76 27 8.8 v/s 14MUL sources located at 0 ht (incorrect) Sc	Gray Sky Solutions As noted in Item 10, the revised modelling and the model results provided to Dr. Gray are correct and follow Ontario's appropriate modelling guidance. The use of methodologies from the United States that are not accepted for use in Ontario is not an appropriate approach. The revised modelling was conducted for all contaminants for both Scenarios 1 and 2. For Scenario 1, with ambient background values added, the contaminant with the highest percentage of the relevant benchmark was PM2.5, which was predicted to reach 82% of the annual Canadian Ambient Air Quality Standard (CAAQS). It must be noted that this is almost entirely due to the ambient background concentrations, which are already at 78% of the CAAQS. The highest percentage of the relevant benchmarks for all contaminants (with background) is summarized below for convenience: Scenario 1 Cont. Averaging Period (hours) Predicted Conc. (pay of concentrations, which are already at 78% of the concentrations, which are already at 78% of the convenience:
criteria levels for Scenario 1. The maximum modeled 24-hr average PM10	PIVITU 24 32 04%

¹³ I also ran these modeling cases to confirm the RWDI results.

concentration (63.98 μg/m ³) is 128% of the AAQC 24-hr PM10 criteria level, and the		PM2.5	24	14	53%	
maximum modeled 24-hr TSP concentration (190.46 µɑ/m³) is 159% of the AAQC 24-hr			Annual	7.2	82%	
TSP criteria level (120 μ g/m ³) As the RWDI modeling demonstrated, if the crops met		Silica	24	1.6	33%	
data are used, there were 106 exceedances of the 24 -br TSP criteria level over the 5-		NO2	1	109	27%	
uala are used, litere were two exceedances of lite 24-111 TSF chilend level over lite 3-			24	48	24%	
year modeling period.			L 27		27/0	
In addition the consistivity moduling (with emission rates for 40 of the module decomposition		Scenario 2				
In addition, the sensitivity modeling (with emission rates for 18 of the modeled sources			Averaging	Predicted	Percent of	
multiplied by ten) using the crops met data would result in a maximum modeled 24-hr		Cont.	Deriod	Conc	Benchmark	
average PM10 concentration of 138.20 µg/m ³ , which is 276% of the AAQC 24-hr PM10			(houre)	(ua/m^3)		
criteria level (50 μg/m³).		TED	(110013)	<u>(µg/iii)</u>	(70)	
		ISF	 	25	4070	
			Annual	20	42 70	
			24	20	50%	
		FIVIZ.5			00%	
		Ciliaa	Annual	7.3	82%	
		Silica	24	3.3	00%	
		NO2	1	95	24%	
			24	45	23%	
		As noted in	the response	to Commen	t 8, the	
		impact of th	e incorrect en	nission rate l	for source	
		"LOAD10" i	n Scenario 2 I	ed to the hig	ner values	
		tor PM2.5 a	nd silica, eve	n though IS	P and PM10	
		were lower	than Scenario	1. Once ag	gain, this	
		minor error	nas only resu	ited in the pi	redicted	
		impacts for	Scenario 2 be	eing more co	nservative.	
				l		
		ino turther a	iction is requil	ea.		
12. The revised Appendix E lists the seurose that are next of Occuration 4 (004) and Occuration		Appendix F	ie purely on i	oformational	choot	
13. The revised Appendix F lists the sources that are part of Scenario 1 (SC1) and Scenario	Gray Sky	Appendix F	a the model of	arameters	sileel	
\geq (302), as well as the modeled source parameters (base elevation, release height,	Solutions	summanzin model files	y the model p	arameters u		
norizontal and vertical dimensions for modeled VOLUME sources, and stack parameters		not material	to the access	penuix is lie	apiui, it is	
tor modeled POINT sources). I compared the sources listed in the revised Appendix F						
with the sources (with non-zero emissions) that were included in the revised modeling		It is acknow	ledged that C	05 should b	e in SC1	
files for SC1 and SC2, and found the following omissions:		howavar thi	s source is po	t material to	the	
		accocement	CO5	ints for 0.010	% of	
For SC1, sources CO5, GEN1, and GEN2 were listed in the revised Appendix F as part		emissione f	rom the site	113 101 0.047		
of SC1, but were not included in the SC1 modeling files. Sources HAUL3, HAUL5,						
TLOAD10, TLOAD12, GEN5, and GEN6 were modeled in SC1 but were not included in		Annendix F	simply provid	es source n	arameters	
the revised Appendix F (as SC1 sources).		for a standa	ard / typical de	nerator set l	they are	
		identical)	However RW	DI acknowle	does that	
For SC2 source TLOAD10 was listed in the revised Appendix F as part of SC2, but was		this line iten	n should read	"GEN1_6" r	not GEN1-4"	
not included in the SC2 modeling files. Source HALIL 1 and TLOAD1 were modeled in		There are 6	different den	erators in dif	ferent	
SC2 but were not included in the revised Appendix E (as SC2 sources). Source		Incretions (C	FN3-6 in Sce	nario 1 and	GEN1-4 in	
SUZ but were not included in the revised Appendix F (as SUZ Sources). Source		Scenario 2)				
LUAD ID was also modeled in SU2 (incorrectly, as described in point 4, above) and not included in the neutron dia E (as an 200 sc			•			
Included in the revised Appendix F (as an SC2 source).		It is acknow	ledged that H		5	
			TI AD12 ch	nuld he lister	LO,	
		Δnnendiv E	for SC1 The	narameters		
			however	parameters	alt	
		unchanged,	, HOWEVEL.			
		Ac noted a		10 should be	at have been	
		included in	CO Thia lin	no snouiu no	roplaced	
			302. The nerve		nepiaceu	
			7. The parar	neters are u	nonangeo,	
		nowever.				
		It is advacu	lodged that !!		d ha listad in	
		IL IS ACKNOW	neugeu inat H	AULI SNOUL		

	Appendix F for SC2. The parameters are unchanged, however.	
	No further action is required.	