Proposed Burlington Quarry Expansion JART COMMENT SUMMARY TABLE – Air Quality

Please accept the following as feedback from the Burlington Quarry Joint Agency Review Team (JART). Fully addressing each comment below will help expedite the potential for resolutions of the consolidated JART objections and individual agency objections. Additional, new comments may be provided once a response has been prepared to the comments raised below and additional information provided.

	JART Comments (February 2021)	Reference	Source of Comment	Applicant Response (July 2021)	JART Response January 2022	Applicant Response January 2022
Repo	ort/Date: Air Quality Study, March 2020		Author: BCX Enviror	mental Consulting		
1.	Their analysis limited the computed air quality impacts by breaking the project up into smaller segments (phases) which were each evaluated separately. The BCX report should clearly indicate whether any of the phases will overlap.	General	Gray Sky Solutions	No, the phases will not overlap.	Comment addressed.	
2.	The dispersion model receptors were restricted to areas immediately surrounding the facility and did not include any receptors at distances further away from the facility, including areas of larger population (and exposure). Most of the larger computed impacts were fairly close to the sources, however it would be useful to also have estimated impacts in a larger geographical area. The modelled receptors should include a broader geographic area, extending to at least 5.0 kilometres from the facility.	General	Gray Sky Solutions	Typically the study area for an air quality study for an aggregate quarry is 1km because the highest concentrations fall close to the property line. For this study, BCX conservatively chose approximately a 3km study area to demonstrate to residents in the vicinity of the quarry that air quality criteria will be met. Within the 3km, the highest concentrations occur at the closer receptors to the quarry and are below the air quality criteria. At 5km the concentrations are lower and will still be below the air quality criteria. At 5km, the concentrations are close to background levels. (i.e. the quarry has little or no impact on air quality at 5km) The air quality study is not intended to be a risk assessment/population exposure study.	Comment addressed.	

nissions factors ted by the Environment, ks (Ministry), nean that the pplicable to this nally accurate. tion (appendices) nportant the sources of d to develop the uding ranges of ned from source es. These data late the potential ors that may be arry and could evelop an tinty of the the resulting eling results erable) that were -42 emissions y analysis would ential air quality rather than a impacts.

are rated as uld only be used cal or siteable. The quarry a number of source test been obtained er emission hose from AP-

t were provided le evidence that ty impacts were nclude any nission factors rtant component ates.

hissions factors The emission factors used in the AQS ed by the contains a range of data quality ratings Environment, (above average, average, marginal) s (Ministry), and not, as implied only marginal.

pplicable to this nally accurate. tion (appendices) protant the sources of d to develop the uding ranges of ned from source es. These data iate the potential ors that may be arry and could

Please see attached sheets for details.

eling results While it may be feasible to obtain source test data for some emission sources such as stacks, source testing of fugitive sources such as crushers is not a simple task as implied. Further, in Ontario, source testing that has not been Ministry approved is rated Marginal or Uncertain. Obtaining Ministry approved data is significant undertaking and the Ministry only uses their resources for regulatory cal or siteible. The quarry

> As previously stated, the emission estimates were conservatively developed and are consistent with normal practices for both general Air Quality Studies and regulatory compliance assessments in Ontario.

	considered reliable for the Burlington Quarry facility.				
4.	Although the estimated (modeled) levels of particulate matter (PM) were below acceptable "air quality criteria", there are still potential health effects (mortality and morbidity risk) associated with the emitted PM and these additional risks should be evaluated.	General	Gray Sky Solutions	This air quality study (AQS) relies on air quality standards set by the province or Environment Canada where provincial standards are not available. This AQS considers the health effects of PM by comparing PM2.5 modelled concentrations against the Canadian Ambient Air Quality Standards (CAAQS). The PM2.5 standards have been set by the Canadian Council of Ministers of the Environment (CCME) to be protective of health. The assessment very conservatively compares the maximum 24-hour and annual concentrations to the CAAQS which are in fact based on a 3- year average of the annual 98th percentile of the daily 24-hour average concentrations and 3-year average of the annual average of the daily 24- hour average concentrations, respectively. The maximum concentrations of PM2.5 at the property line and at all sensitive receptors are below the CAAQS. The AQS is not intended to be a risk	Comment addressed.

				assessment.	
5.	The background level for B(a)P was obtained from monitoring	General	Gray Sky	The background level for B(a)P	Comment addressed.
	located 78.0 kilometres and 109.0 kilometres, respectively		Solutions	National Air	
	from the Nelson guarry, and are likely not representative of			Pollution Surveillance (NAPS)	
	the air quality in the vicinity of the quarry. Further analysis of			ambient monitoring station	
	these data needs to be performed to justify their use in			located in the township of	
	establishing background B(a)P levels, including			Simcoe (not Barrie)	
	B(a)P levels.			southwest of the Nelson Quarry. This	
				station is	
				located in a reasonably similar	
				rural/suburban location to the	
				Site.	
				Air quality studies (AQS) in Ontario	
				rely on background data from	
				ambient stations and this AQS	
				onows the accepted approach in	
				Chano.	
				B(a)P data is also available from	
				one closer ambient monitoring	
				station, the Toronto West MECP	
				(approximately 50km away) This	
				station is within the City of Toronto	

				A comparison of the B(a)P data from both stations shows that the background levels are similar. The background chosen is, therefore, considered representative and fairly consistent across Ontario.		
6.	The meteorological preprocessor for the AERMOD model (AERMET) has been updated (in 2011) to include a separate processing tool (AERMINUTE) that is recommended to be used to account for calm wind speeds when using hourly wind data from nearby airports. The BCX report should indicate where the meteorological data were obtained (and assess whether it is close enough to reliably represent conditions at the Burlington site), and whether one-minute (ASOS) wind data were used to reduce the number of calm winds (using AERMINUTE). The AERMOD computer files that were received do not include the AERMET processing files.	General	Gray Sky Solutions	The regulatory body, Ontario Ministry of the Environment, Conservation and Parks (Ministry) processed the surface and upper meteorological data using AERMET to develop an AERMOD ready site- specific met set to be used for this site. The Ministry has their own procedure to treat calm hours from the met data set. The Ministry does not include the AERMET processing files when they provide the AERMOD ready site- specific met set.	Comment addressed.	
7.	The BCX modeling report indicates that the traffic was represented in the modeling using a "typical shipping" assumption. However the traffic report for the proposed quarry extension (Paradigm Transportation Solutions Limited, report dated February 2020) indicates that "the site's the weekday AM peak hour truck generation is forecast to be 111 truck trips", which is significantly greater than the average daily truck traffic and would therefore generate much higher emissions during morning hours. The modeling therefore needs to include a non-uniform diurnal distribution of traffic emissions that includes the peak AM traffic density.	General	Gray Sky Solutions	Per the Traffic Study (Feb 2020), 111 truck trips means 56 inbound and 55 outbound trips (i.e. one-way trips). Trucks/day or trucks/hr in the Air Quality Study (AQS) means a two-way round trip of those trucks for the purposes of emission estimates. 111 truck trips will be equivalent to 56 trucks/hr in the AQS. Using a 24-hr average emission rate is an acceptable method per the Ministry guidance documents for contaminants with 24-hr average standards such as PM2.5. For this AQS, the daily truck emission rate (daily truck traffic emissions over 24 hrs is assumed to occur equally over 24 hrs. Since, dispersion is typically poor at night and truck traffic will be minimal at night, this approach will result in a similar or more conservative 24-hr average concentration than if a non-uniform diurnal distribution of traffic emissions was assumed. Furthermore, daily trucks entering the site assumed in the air quality study was 469 to 681(trucks/day depending on the month), which is very conservative compared to the approximate equivalent of 400	It is a fairly simple task to include a diurnal profile of emissions in the AERMOD model to address the non- uniform distributions of hourly truck traffic. Although (as the MHBC response states) dispersion is typically poor at night (resulting in higher concentration impacts per truck trip for those hours), dispersion is also often poor in the early morning hours which would potentially increase the impacts significantly during those hours when peak traffic densities are expected to occur. The modeling needs to be revised to account for the peak hourly truck traffic (111 trips per hour).	As requested, the maximum hourly trucking of 112 truck trips per hour were updated in the calculation sheets. BCX confirmed with the Traffic Study consultant that the AM Peak hour does not mean maximum trucks entering the quarry at that specific hour. The AM Peak Hour per the traffic study means the maximum car and trucks on the public road. (e.g. rush hour traffic) The maximum hourly trucking distribution is attached. Maximum hourly trucks actually occur in the 8am to 3pm time range. Notwithstanding, BCX tested the sensitivity of trucking variable emissions for PM2.5 (24hr) in AERMOD for two scenarios: 1. Peak hourly traffic was very conservatively concentrated into morning hours as requested. 2. Actual expected truck distribution per hour as provided in Appendix B of the Traffic Study. Modelling results PM2.5 (24hr) shows that there would be negligible change and that the AQS conclusions remain unchanged (i.e. PM2.5 24-hr avg

			trucks per day in the traffic study.		concentrations remain below the
			The AQS assumed for contaminants with 1-hr average standards (e.g. Nitrogen Dioxide (NO2)), an hourly truck rate of 67 to 84 trucks/hour (depending on month). The AQS 67 to 84 trucks/hour is equivalent to 67x2=134 to 84x2=168 truck trips in the Traffic Study. The hourly truck number used for the AQS is much higher than the 111 truck trips (peak hour) in the Traffic Study. The AQS did not use a "typical shipping" assumption and used a very conservative worst case shipping assumption.		criteria) Please see attached sheets and modelling file for details. As explained in the previous BCX response, contaminants with 1-hr average standards (e.g. Nitrogen Dioxide (NO2)) have already been modelled conservatively using more than the peak hourly traffic trips (>111) and assuming the peak hour can occur any hour in the 24 hour day. Per the Traffic Study, peak traffic counts are expected in the time range of 8am to 3pm and would not be occurring every single hour of the day.
Does Nelson track or have any data on emissions or	General	Halton Region	BCX worked in collaboration with Paradigm Transportation Solutions Limited and was aware of the conservative AQS truck assumptions compared to the traffic study. BCX purposely kept the theoretical worst case assumptions to be conservative. Nelson has a detailed Dust	How do we know this is the case if no	An effective BMP that requires
undertake monitoring related to air quality from their current operation?			Management Plan. Nelson completes monitoring checklists from their Dust Management Plan. With the DMP in place, dust from the site is expected to be minimized.	active monitoring is provided? (Point observation checklists only.) How does the proposal contribute to the overall improvement of air quality in Halton Region? Dust clouds were observed on the site visit (November 24, 2021), and a delegation raised dust as an issue at the Region's statutory public meeting. Dust is to be mitigated on site (Provincial Standards, Category 2, section 3.1). This standard does not appear to be met by the current operation today. The application needs to demonstrate on the site plan the improvements to be made to contain dust on site.	 documentation to show that measures are being implemented, recorded and where necessary improved upon is highly effective. Relying on periodic ambient monitoring at a few locations is a less effective tool than having a robust dust management plan. The dust management plan is a living document that requires regular review to confirm that fugitive dust is being properly managed. Originally, Nelson used informal dust management plan which will be required under the site plan. It may be possible to observe dust on site. However, the purpose of the dust management plan is to prevent fugitive dust impacts off-site. On a regional level no change in air management plane the site plan.
	Does Nelson track or have any data on emissions or undertake monitoring related to air quality from their current operation?	Does Nelson track or have any data on emissions or undertake monitoring related to air quality from their current operation?	Does Nelson track or have any data on emissions or undertake monitoring related to air quality from their current operation?	Des Nelson track or have any data on emissions or understand to perform their current operation? General Halton Region Des Nelson track or have any data on emissions or understand to perform their current operation? General Halton Region Nelson sequent loss Nelson Sequent loss Nelson Sequent loss Nelson Sequent loss With the DMP in place, dust Intel sequent loss Nelson Sequent loss Nelson Sequent loss Des Nelson track or have any data on emissions or understand loss of the AGS is is expected to be conservative. Nelson has a detailed Dust Management Plan. With the DMP in place, dust Management Plan. Number used to be on the place dust of be been place. Nelson has a detailed Dust Management Plan.	Does Noison track or have any data on omissions or updrated for any data on omissions ore updrated for any data on omissions ore updrated for any data on

	extension. Concentrations from the quarry drop off rapidly with distance since emission sources are low in height.
--	---

AERMOD Modelling Source Emission Rates (Scenario A)

				Maximu Emission	ım Daily Rate (g/s)	Maximu Emission	n Annual Rate (g/s)	Maximum Hourly Emission Rate (g/s)	
Source Type	Modelling Source ID	Scenario	Modelling Source Description	PM	PM2.5	РМ	PM2.5	PM	PM2.5
				24 hr	24 hr	Annual	Annual	1 hr	1 hr
OPEN_PIT	PTDR_HMA	HMA	Existing Pit Drop Points HMA	7.80E-01	5.17E-02	9.08E-02	6.02E-03	0.00E+00	0.00E+00
OPEN_PIT	PTOS_HMA	HMA	Existing Pit Other Sources HMA	2.57E-01	4.43E-02	8.52E-02	6.87E-03	0.00E+00	0.00E+00
OPEN_PIT	PTDR_QE	SA	Existing Pit Drop Points - Quarry	1.25E+00	8.26E-02	7.59E-01	5.03E-02	0.00E+00	0.00E+00
OPEN_PIT	PTOS_QE	SA	Existing Pit Other Sources - Quarry	1.05E+00	4.09E-02	1.65E+00	6.29E-02	0.00E+00	0.00E+00
OPEN_PIT	PTOS_QEV	SA	Existing Pit Other Sources - Quarry - Trucks Hourly Variable	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.58E+00	1.79E-01
OPEN_PIT	PTOS_QA	SA	ScA quarry other sources	7.37E-01	3.35E-02	6.17E-01	2.49E-02	0.00E+00	0.00E+00
OPEN_PIT	PTOS_QAV	SA	ScA quarry other sources - Hourly Variable	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.17E-01	1.04E-02
POINT	BH_HMA	HMA	Existing HMA dryer baghouse	4.86E-01	2.94E-01	9.32E-02	5.64E-02	0.00E+00	0.00E+00
POINT	GEN_HMA	HMA	Existing Pit HMA RAP crusher generator	9.47E-03	9.47E-03	7.10E-03	7.10E-03	0.00E+00	0.00E+00
POINT	GEN1_QEX	SA	ScA/B/C/D Crushing Plant 1 Generator	2.87E-02	2.87E-02	2.15E-02	2.15E-02	0.00E+00	0.00E+00
POINT	GEN2_QEX	SA	ScA/B/C/D Crushing Plant 2 Generator	2.87E-02	2.87E-02	2.15E-02	2.15E-02	0.00E+00	0.00E+00

Note:

1 Emissions for material drop points (highlighted in blue) have been calculated for the six AERMOD wind categories. Emission rates for Category F are presented in this table.

Source I.D.	Scenario	Scenario	Source ID	Calculat ion Sheet	Description	Material	Modelled Source	Contaminant	CAS #	Averaging Period	Maximum Emission Rate (g/s)	Emission Estimating Technique	Emissions Data Quality	% of Overall Emissions
Q2Ru	SE	SE	Q2Ru	11A	Road dust emissions from processed limestone shipping trucks travelling on onsite unpaved road	-	PTOS_QEV	PM	PM	1 hr	9.71E-01	EF	AA	14.9%
		SE	Q2Ru	11A			PTOS_QEV	PM2.5	PM2.5	1 hr	2.76E-02	EF	AA	10.5%
Q1Rp	SE	SE	Q1Rp	11B	Road dust emissions from processed limestone shipping trucks travelling on onsite paved road	-	PTOS_QEV	PM	PM	1 hr	3.02E-01	EF	AA	4.6%
		SE	Q1Rp	11B			PTOS_QEV	PM2.5	PM2.5	1 hr	1.44E-02	EF	М	5.5%
Q1Tt	SE	SE	Q1Tt	11C	Tailpipe emissions from processed limestone shipping trucks travelling on onsite road	-	PTOS_QEV	PM	PM	1 hr	1.84E-02	EF	AA	0.3%
		SE	Q1Tt	11C			PTOS_QEV	PM2.5	PM2.5	1 hr	5.95E-03	EF	AA	2.3%
Q1Ti	SE	SE	Q1Ti	11D	Tailpipe emissions from processed limestone shipping trucks idling during loading	-	PTOS_QEV	PM	PM	1 hr	7.24E-03	EF	AA	0.1%
		SE	Q1Ti	11D			PTOS_QEV	PM2.5	PM2.5	1 hr	3.58E-03	EF	AA	1.4%
QRp-FILL	SE	SE	QRp-FILL	11B	Road dust emissions from rehab delivery trucks travelling on onsite paved road	-	PTOS_QEV	PM	PM	1 hr	2.84E-01	EF	AA	4.4%
		SE	QRp-FILL	11B			PTOS_QEV	PM2.5	PM2.5	1 hr	1.36E-02	EF	AA	5.1%
QTt-FILL	SE	SE	QTt-FILL	11C	Tailpipe emissions from rehab delivery trucks travelling on onsite road	-	PTOS_QEV	PM	PM	1 hr	2.53E-02	EF	AA	0.4%
		SE	QTt-FILL	11C			PTOS_QEV	PM2.5	PM2.5	1 hr	8.22E-03	EF	AA	3.1%
QTi-FILL	SE	SE	QTi-FILL	11D	Tailpipe emissions from rehab delivery trucks idling during unloading	-	PTOS_QEV	PM	PM	1 hr	3.69E-03	EF	AA	0.1%
		SE	QTi-FILL	11D			PTOS_QEV	PM2.5	PM2.5	1 hr	1.83E-03	EF	AA	0.7%
P1-Q4Ru	SA	SA	P1-Q4Ru	11A	Road dust emissions from processed limestone shipping trucks travelling on onsite unpaved road	-	PTOS_QEV	PM	PM	1 hr	2.91E+00	EF	М	44.8%
		SA	P1-Q4Ru	11A			PTOS_QEV	PM2.5	PM2.5	1 hr	8.29E-02	EF	М	31.4%
P1-Q1Rp	SA	SA	P1-Q1Rp	11B	Road dust emissions from processed limestone shipping trucks travelling on onsite paved road	-	PTOS_QEV	PM	PM	1 hr	9.05E-01	EF	AA	13.9%
		SA	P1-Q1Rp	11B			PTOS_QEV	PM2.5	PM2.5	1 hr	4.32E-02	EF	AA	16.4%
P1-Q1Tt	SA	SA	P1-Q1Tt	11C	Tailpipe emissions from processed limestone shipping trucks travelling on onsite road	-	PTOS_QEV	PM	PM	1 hr	5.51E-02	EF	AA	0.8%
		SA	P1-Q1Tt	11C			PTOS_QEV	PM2.5	PM2.5	1 hr	1.79E-02	EF	AA	6.8%
P1-Q1Ti	SA	SA	P1-Q1Ti	11D	Tailpipe emissions from processed limestone shipping trucks idling during loading	-	PTOS_QEV	PM	PM	1 hr	2.17E-02	EF	AA	0.3%
		SA	P1-Q1Ti	11D			PTOS_QEV	PM2.5	PM2.5	1 hr	1.07E-02	EF	AA	4.1%
P1-Q1Ru-FILL	SA	SA	P1-Q1Ru-FILL	11A	Road dust emissions from rehab delivery trucks travelling on onsite unpaved road (existing quarry road)	-	PTOS_QEV	PM	PM	1 hr	5.74E-01	EF	AA	8.8%
		SA	P1-Q1Ru-FILL	11A			PTOS_QEV	PM2.5	PM2.5	1 hr	1.63E-02	EF	М	6.2%
P1-Q2Ru-FILL	SA	SA	P1-Q2Ru-FILL	11A	Road dust emissions from rehab delivery trucks travelling on onsite unpaved road (extension quarry road)	-	PTOS_QAV	PM	PM	1 hr	3.14E-01	EF	AA	4.8%
		SA	P1-Q2Ru-FILL	11A			PTOS_QAV	PM2.5	PM2.5	1 hr	8.92E-03	EF	AA	3.4%
P1-QRp-FILL	SA	SA	P1-QRp-FILL	11B	Road dust emissions from rehab delivery trucks travelling on onsite paved road	-	PTOS_QEV	PM	PM	1 hr	1.00E-01	EF	AA	1.5%
		SA	P1-QRp-FILL	11B			PTOS_QEV	PM2.5	PM2.5	1 hr	4.79E-03	EF	AA	1.8%
P1-Q1Tt-FILL	SA	SA	P1-Q1Tt-FILL	11C	Tailpipe emissions from rehab delivery trucks travelling on onsite road (existing quarry road)	-	PTOS_QEV	PM	PM	1 hr	8.52E-03	EF	AA	0.1%
		SA	P1-Q1Tt-FILL	11C			PTOS_QEV	PM2.5	PM2.5	1 hr	2.76E-03	EF	AA	1.0%
P1-Q2Tt-FILL	SA	SA	P1-Q2Tt-FILL	11C	Tailpipe emissions from rehab delivery trucks travelling on onsite road (extension quarry road)	-	PTOS_QAV	PM	PM	1 hr	2.53E-03	EF	AA	0.0%
		SA	P1-Q2Tt-FILL	11C			PTOS_QAV	PM2.5	PM2.5	1 hr	8.19E-04	EF	AA	0.3%
P1-QTi-FILL	SA	SA	P1-QTi-FILL	11D	Tailpipe emissions from rehab delivery trucks idling during unloading	-	PTOS_QAV	PM	PM	1 hr	1.30E-03	EF	AA	0.0%
		SA	P1-QTi-FILL	11D			PTOS_QAV	PM2.5	PM2.5	1 hr	6.45E-04	EF	AA	0.2%

AERMOD Variable Emissions - Trucking - Theoretical All Morning			max receptor	background	criteria	% of criteria
AM Peak Hour 7:30 to 8:30 per Traffic Study		PM2.5 ScA (Original AQS Result) ug/m3	4.098	12.04	27	60%
Hourly: 56 physical trucks (111 truck trips)						
Daily: 427 physical trucks (854 truck trips)	112 trips/hr	PM2.5 ScA (Truck Traffic Hourly Var) ug/m3	4.330	12.04	27	61%

AM Peak hour does not mean maximum trucks entering the quarry at that specific hour, AM Peak hour per the traffic study means the maximum car and trucks on the public road. (e.g. rush hour traffic)

	Factor of 1 means assum	ing emissions from max hourly trips of	of 112 occuring in that hour
Ending Hour	Factor	Hourly Truck Trips Distribution A	ssumpt Daily Total Max = 854 trips (i.e. sum of hourly will not exceed this)
1	0		
2	2 0		
3	8 0		
4	0		
5	5 O		
6	5 1	112	854
7	1	112	
8	3 1	112	
9) 1	112	
10	1	112	
11	1	112	
12	2 1	112	
13	0.0820	70	Factor = 70/854
14	0		
15	i 0		
16	5 0		
17	0		
18	8 0		
19	0		
20	0		
21	0		
22	2 0		
23	sl 0		

AERMOD Variable Emissions - Trucking - Realistic Distribution

max receptor background criteria % of criteria 4.10 12.04 27 60% rning Theoretical) ug/m3 4.33 12.04 27 61% listic Distribution) ug/m3 3.63 12.04 27 58%

85% 87% 78%

112 trips/hr	PM2.5 ScA (Truck Traffic Hourly Var - Morning Theoretical) ug/m3	4.33	12.04	27	
112 trips/hr	PM2.5 ScA (Truck Traffic Hourly Var - Realistic Distribution) ug/m3	3.63	12.04	27	
	PM ScA (Original AQS Result) ug/m3	54.18	48.17	120	
112 trips/hr	PM ScA (Truck Traffic Hourly Var - Morning Theoretical) ug/m3	56.50	48.17	120	
112 trips/hr	PM ScA (Truck Traffic Hourly Var - Realistic Distribution) ug/m3	45.40	48.17	120	

	Factor of 1 means assu	ming emissions from max hourly trips of 112 occuring in that hour
Ending Hour	Factor	Hourly Truck Distribution Assumption (Appendix B of Traffic Report)

Daily Total Max = 427 trucks (i.e. sum of hourly will not exceed this)

427 Total Physical Truck Measured By Traffic Study (Appendix B)

PM2.5 ScA (Original AQS Result) ug/m3

		ractor of 1 means assa	
Ending Hour		Factor	Но
	1	0.00	
	2	0.00	
	3	0.00	
	4	0.00	
	5	0.00	
	6	0.00	
	7	0.40	
	8	0.60	
	9	0.98	
1	0	1.00	
1	1	0.96	
1	2	0.88	
1	3	0.85	
1	4	0.94	
1	5	0.90	
1	6	0.67	
1	7	0.35	
1	8	0.33	
1	9	0.02	
2	0	0.00	
2	1	0.02	
2	2	0.00	
2	3	0.00	
2	4	0.00	
	_		

	max receptor		background	criteria	% of criteria
PM2.5 ScA (Truck Traffic Hourly Var - Realistic Distribution) ug/m3	3.630		12.04	27	58%
PM2.5 ScA (Truck Traffic Hourly Var) ug/m3 (New Theoretical)	5.010		12.04	27	63%
	Max conc. may not occur on same	day			
	ug/m3 at max receptor		% of total	Data Quality (PM2.5)	
PTOS_QA		0.43	8.7%	Marginal	
PTOS_QAV		0.06	1.2%	Above Average	
PTOS_QE		0.81	16.5%	Marginal	
PTOS_QEV		1.35	27.4%	Above Average	
PTOSHMAV		0.53	10.8%	Above Average	
BH_HMA		0.63	12.8%	Marginal	
PTDR_HMA		0.09	1.8%	Above Average	
PTDR_QE		0.14	2.8%	Above Average	
PTOS_HMA		0.88	17.9%	Average	
Total Conc (not same day, will not be exactly the same as 3.63)		4.92			
Approx. Marginal Data Quality (Contribution to % Conc. At Max Receptor)			38.0%		
PM2.5 ScA (Truck Traffic Hourly Var) ug/m3		3.630 Tot	tal		
· · · · ·		1.380 Ma	arginal Portion		

PM2.5 ScA (Truck Traffic Hourly Var) ug/m3 (New Theoretical)

2.759 Marginal Portion x2 (Theoretically Doubled)2.250 Non-marginal Portion5.010 Total

2.250 Non-marginal Portion

Calculation Sheet 9A Unpaved Road Dust Emissions

Unpaved Road Dust Emission Rate [g/s] = Unpaved Road Emission Factor [g/VKT] x Trip Distance [km] x (1-Control Efficiency [%]) / Averaging Period Converted to seconds [years to seconds/days to seconds/hours to seconds])

	Unpaved Road Emission Factor E (lb/VMT) = k * ((s/12)^a * (W/3)^b) [Note 1]]							
Source I.D.	Scenario	Operation	Activity	Contaminant	CAS No.	Trip ID	Trip Distance (km) [Note 2]	Number of Trucks per Hour (roundtrip 56x2=112 trips/hr)	Empty Vehicle Weight (tonne) [Note 3]	Load Weight (tonne)	Loaded Vehicle Weight (tonne)	Vehicle Weigh (ton) [Note 3]	Silt Content t of Unpaved Road, s (%) [Note 1]	k [Note 1]	a [Note 1]	b [Note 1]	Emission Factor (g/VKT) [Note 4]	Uncontrolled Emissions (g/s)	Control Efficiency (%) [Note 5]	Controlled Emissions (g/s)	Averaging Period [Note 6]	US EPA AP42 Data Quality	Estimation Technique
Quarry Operation	ns - Scenario A	(Phase 1a/1b & Phase 2)	1	1			-			T	1	1			T	T	T			P			
P1-Q4Ru	SA	SA-Quarry Operations	Road dust emissions from processed limestone shipping trucks travelling on onsite unpaved road	PM	PM	Q-SHIPP	1.4	50	12.0	30	42	29.8	8.3	4.9	0.7	0.45	2996.850	5.83E+01	95%	2.91E+00	1 hr	В	EF
P1-Q4Ru	SA	SA-Quarry Operations	Road dust emissions from processed limestone shipping trucks travelling on onsite unpaved road	PM2.5	PM2.5	Q-SHIPP	1.4	50	12.0	30	42	29.8	8.3	0.15	0.9	0.45	85.220	1.66E+00	95%	8.29E-02	1 hr	в	EF
P1-Q1Ru-FILL	SA	SA-Quarry Operations	Road dust emissions from rehab delivery trucks travelling on onsite unpaved road (existing quarry road)	РМ	PM	Q-FILL-E	2.38	6	14.0	22	36	27.6	8.3	4.9	0.7	0.45	2894.838	1.15E+01	95%	5.74E-01	1 hr	В	EF
P1-Q1Ru-FILL	SA	SA-Quarry Operations	Road dust emissions from rehab delivery trucks travelling on onsite unpaved road (existing quarry road)	PM2.5	PM2.5	Q-FILL-E	2.38	6	14.0	22	36	27.6	8.3	0.15	0.9	0.45	82.319	3.27E-01	95%	1.63E-02	1 hr	В	EF
P1-Q2Ru-FILL	SA	SA-Quarry Operations	Road dust emissions from rehab delivery trucks travelling on onsite unpaved road (extension quarry road)	РМ	PM	Q-FILL	1.3	6	14.0	22	36	27.6	8.3	4.9	0.7	0.45	2894.838	6.27E+00	95%	3.14E-01	1 hr	В	EF
P1-Q2Ru-FILL	SA	SA-Quarry Operations	Road dust emissions from rehab delivery trucks travelling on onsite unpaved road (extension quarry road)	PM2.5	PM2.5	Q-FILL	1.3	6	14.0	22	36	27.6	8.3	0.15	0.9	0.45	82.319	1.78E-01	95%	8.92E-03	1 hr	В	EF

Calculation Sheet 9B Paved Road Dust Emissions

Road Dust Emission Rate [g/s] = E [g/VMT] x Number of Vehicles x Distance Travelled [miles] / Averaging Period Converted to seconds [years to seconds/days to seconds/hours to seconds]

Paved Road Emission Factor E (g/VMT) = k * ((sL)^0.91 * (W)^1.02) [Note 1]

E = the particulate emission factor [g/VMT]

k = particulate size multiplier [g/VMT]

sL = silt loading [g/m^2]

W = average weight of vehicle [tons]

Source ID	Scenario	Operation	Source Description	Contaminant	CAS Number	Trip ID	Averaging Period [Note 2]	k (g/VMT) [Note 1]	ADT	Number of Trucks per Hour (roundtrip 56x2=112 trips/hr)	Distance Travelled (miles) [Note 4]	sL (g/m^2) [Note 1]	W (tons) [Note 1]	E (g/VMT) [Note 1]	Control Efficiency (%) [Note 5]	Emission Rate (g/s)	US EPA AP42 Data Quality	Estimation Technique
Quarry Opera	tions - Scenario	o A (Phase 1a/1b & Phase 2)																
P1-Q1Rp	SA	SA-Quarry Operations	Road dust emissions from processed limestone shipping trucks travelling on onsite paved road	PM	PM	Q-SHIPP	1 hr	5.24	<500	50	1.243	0.6	29.76	1.05E+02	50%	9.05E-01	А	EF
P1-Q1Rp	SA	SA-Quarry Operations	Road dust emissions from processed limestone shipping trucks travelling on onsite paved road	PM2.5	PM2.5	Q-SHIPP	1 hr	0.25	<500	50	1.243	0.6	29.76	5.00E+00	50%	4.32E-02	D	EF
P1-QRp-FILL	SA	SA-Quarry Operations	Road dust emissions from rehab delivery trucks travelling on onsite paved road	PM	PM	Q-FILL-E	1 hr	5.24	<500	6	1.243	0.6	27.56	9.69E+01	50%	1.00E-01	А	EF
P1-QRp-FILL	SA	SA-Quarry Operations	Road dust emissions from rehab delivery trucks travelling on onsite paved road	PM2.5	PM2.5	Q-FILL-E	1 hr	0.25	<500	6	1.243	0.6	27.56	4.62E+00	50%	4.79E-03	D	EF

Calculation Sheet 9C Tailpipe Travelling Emissions

	Tailpipe Travelling Emission Rate [g/s] = Number of Vehicles x Distance Travelled per Vehicles [km] x 0.621 [miles/ km] x Travelling Emission Factor [g/VMT] / Averaging Period Converted to Seconds [years to seconds/hours to seconds]														
Source ID	Scenario		Source Description	Contaminant	CAS No.	Trip ID	Vehicle Type	Trip Distance (km) [Note 1]	Number of Trucks per Hour (roundtrip 56x2=112 trips/hr	Travelling Emission Factor (g/VMT) [Note 2]	Emission Rate (g/s)	Averaging Period [Note 3]	Data Quality	Estimation Technique	
Quarry Opera	tions - Scena	rio A (Phase 1a/1b & Phase 2)								•					
P1-Q1Tt	SA	SA-Quarry Operations	Tailpipe emissions from processed limestone shipping trucks travelling on onsite road	PM	PM	Q-SHIPP	Aggregate/Limestone/RAP truck	3.4	50	1.88E+00	5.51E-02	1 hr	Above Average	MOVES EF	
P1-Q1Tt-FILL	SA	SA-Quarry Operations	Tailpipe emissions from rehab delivery trucks travelling on onsite road (existing quarry road)	PM	PM	Q-FILL-E	Aggregate/Limestone/RAP truck	4.38	6	1.88E+00	8.52E-03	1 hr	Above Average	MOVES EF	
P1-Q2Tt-FILL	SA	SA-Quarry Operations	Tailpipe emissions from rehab delivery trucks travelling on onsite road (extension quarry	PM	PM	Q-FILL	Aggregate/Limestone/RAP truck	1.3	6	1.88E+00	2.53E-03	1 hr	Above Average	MOVES EF	
P1-Q1Tt	SA	SA-Quarry Operations	Tailpipe emissions from processed limestone shipping trucks travelling on onsite road	PM2.5	PM2.5	Q-SHIPP	Aggregate/Limestone/RAP truck	3.4	50	6.09E-01	1.79E-02	1 hr	Above Average	MOVES EF	
P1-Q1Tt-FILL	SA	SA-Quarry Operations	Tailpipe emissions from rehab delivery trucks travelling on onsite road (existing quarry road)	PM2.5	PM2.5	Q-FILL-E	Aggregate/Limestone/RAP truck	4.38	6	6.09E-01	2.76E-03	1 hr	Above Average	MOVES EF	
P1-Q2Tt-FILL	SA	SA-Quarry Operations	Tailpipe emissions from rehab delivery trucks travelling on onsite road (extension quarry	PM2.5	PM2.5	Q-FILL	Aggregate/Limestone/RAP truck	1.3	6	6.09E-01	8.19E-04	1 hr	Above Average	MOVES EF	

Calculation Sheet 9D Tailpipe Idling Emissions

	Tailpipe Idling Emission Rate [g/s] = Number of Vehicles x Distance Travelled per Vehicle [km] x 0.621 [miles/ km] Speed [miles/h] x Idling Emission Factor [g/VMT] x Idling Time [h] / Averaging Period Converted to Seconds [years to seconds/hours to seconds]														
Source ID	Scenario	Operation	Source Description	Contaminant	CAS No.	Trip ID	Vehicle Type	Number of Trucks per Hour (roundtrip 56x2=112 trips/hr) [Note 1]	ldling "Speed" (miles/h) [Note 2]	Idling Time (h) [Note 1]	Idling Emission Factor (g/VMT) [Note 3]	Emission Rate (g/s)	Averaging Period [Note 4]	Data Quality	Estimation Technique
Quarry Oper	ations - Scen	ario A (Phase 1a/1b & Phase 2)	·			•									1
P1-Q1Ti	SA	SA-Quarry Operations	Tailpipe emissions from processed limestone shipping trucks idling during loading	PM	PM	Q-SHIPP	Aggregate/Limestone/RAP truck	50	2.5	0.17	3.75E+00	2.17E-02	1 hr	Above Average	MOVES EF
P1-QTi-FILL	SA	SA-Quarry Operations	Tailpipe emissions from rehab delivery trucks idling during unloading	PM	PM	Q-FILL	Aggregate/Limestone/RAP truck	6	2.5	0.08	3.75E+00	1.30E-03	1 hr	Above Average	MOVES EF
P1-Q1Ti	SA	SA-Quarry Operations	Tailpipe emissions from processed limestone shipping trucks idling during loading	PM2.5	PM2.5	Q-SHIPP	Aggregate/Limestone/RAP truck	50	2.5	0.17	1.86E+00	1.07E-02	1 hr	Above Average	MOVES EF
P1-QTi-FILL	SA	SA-Quarry Operations	Tailpipe emissions from rehab delivery trucks idling during unloading	PM2.5	PM2.5	Q-FILL	Aggregate/Limestone/RAP truck	6	2.5	0.08	1.86E+00	6.45E-04	1 hr	Above Average	MOVES EF

Paradigm Transportation Solutions Limited 5A-150 Pinebush Rd

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com Count Name: Gravel Pit - Number 2 Sideroad east of Guelph Line Site Code: Start Date: 10/08/2019 Page No: 1

						Turi	ning Mo	vement D	Data							
		Ν	lumber 2 Sideroa	d			1	Number 2 Sideroa	ıd			(Gravel Pit	>		
Start Time			Eastbound					Westbound					Southbound			
Start Time	Left	Thru	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	Int. Total
4:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 AM	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1
Hourly Total	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1
5:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 AM	0	4	0	0	4	2	1	0	0	3	0	0	0	0	0	7
5:30 AM	2	3	0	0	5	1	1	0	0	2	0	0	0	0	0	7
5:45 AM	2	1	0	0	3	1	6	0	0	7	0	0	0	0	0	10
Hourly Total	4	8	0	0	12	4	8	0	0	12	0	0	0	0	0	24
6:00 AM	0	5	0	0	5	1	8	0	0	9	1	0	0	0	1	15
6:15 AM	1	2	0	0	3	1	9	0	0	10	2	0	0	0	2	15
6:30 AM	0	10	0	0	10	0	8	0	0	8	9	0	0	0	9	27
6:45 AM	0	11	0	0	11	4	8	0	0	12	7	0	0	0	7	30
Hourly Total	1	28	0	0	29	6	33	0	0	39	19	0	0	0	(19)	87
7:00 AM	1	8	0	0	9	6	8	0	0	14	9	0	0	0	9	32
7:15 AM	0	22	0	0	22	0	8	0	0	8	6	0	0	0	6	36
7:30 AM	0	22	0	0	22	11	11	0	0	22	5	0	0	0	5	49
7:45 AM	0	21	0	0	21	6	14	0	0	20	9	0	0	0	9	50
Hourly Total	1	73	0	0	74	23	41	0	0	64	29	0	0	0	(29)	167
8:00 AM	0	24	0	0	24	10	10	0	0	20	16	0	0	0	16	60
8:15 AM	0	18	0	0	18	7	8	0	0	15	11	0	0	0	11	44
8:30 AM	1	11	0	0	12	6	9	0	0	15	9	1	0	0	10	37
8:45 AM	0	11	0	0	11	7	5	0	0	12	8	2	0	0	10	33
Hourly Total	1	64	0	0	65	30	32	0	0	62	44	3	0	0	(47)	174
9:00 AM	0	6	0	0	6	4	19	0	0	23	10	0	0	0	10	39
9:15 AM	0	6	0	0	6	8	15	0	0	23	12	0	0	0	12	41
9:30 AM	0	6	0	0	6	6	12	0	0	18	16	0	0	0	16	40
9:45 AM	0	8	0	0	8	3	9	0	0	12	10	0	0	0	10	30
Hourly Total	0	26	0	0	26	21	55	0	0	76	48	0	0	0	48	150
10:00 AM	1	2	0	0	3	1	11	0	0	12	9	0	0	0	9	24
10:15 AM	0	6	0	0	6	8	15	0	0	23	9	1	0	0	10	39
10:30 AM	0	6	0	0	6	1	13	0	0	14	6	0	0	0	6	26
10:45 AM	0	3	0	0	3	3	15	0	0	18	20	1	0	0	21	42
Hourly Total	1	17	0	0	18	13	54	0	0	67	44	2	0	0	46	131
11:00 AM	0	9	0	0	9	3	9	0	0	12	14	1	0	0	15	36

11:15 AM	0	8	0	0	8	6	4	0	0	10	15	0	0	0	15	33
11:30 AM	0	7	0	0	7	3	9	0	0	12	6	0	0	0	6	25
11:45 AM	0	7	0	0	7	7	12	0	0	19	6	0	0	0	6	32
Hourly Total	0	31	0	0	31	19	34	0	0	53	41	1	0	0	42	126
12:00 PM	0		0	0		5	10	0	0		10	0	0	0	— <u> </u>	33
12:15 PM	0	3	0		3	1	13	0	0	17	11	0	0	0	10	31
12:30 PM	0	2	0	0	2	6	12	0	0	18	10	0	0	0	10	30
12:45 PM	0	7	0		7	1	12	0	0	13	10	0	0	0	10	30
Hourly Total	0	20	0		20	16	47	0	0	63	10	0	0	0	(1)	124
1:00 PM	0	10	0	0	10	5	11	0	0	16	18	0	0	0	18	44
1:15 PM	0	11	0	0	11	6	7	0	0	13	12	0	0	0	12	36
1:30 PM	0		0		5	12	12	0	0	24	5	0	0	0	5	34
1:45 PM	0	7	0	0	7	4	7	0	0	11	10	0	0	0	10	28
Hourly Total	0	33	0	0	33	27	37	0	0	64	45	0	0	0	45	142
2:00 PM	0	9	0		9	5	1/	0	0	19	10	0	0	0	10	38
2:00 P M	0	6	0	0	6	9	13	0	0	22	10	0	0	0	10	38
2:30 PM	0	11	0		11	9	14	0	0	23	10	0	0	0	10	44
2:45 PM	0	2	0		2	9			0		13	0		0	13	31
2.43 FM	0	28	0	0	28	31	19	0	0	80	13	0	0	0	(13)	151
3:00 PM	0	5	0	0	5	10		0	0	12	16	1	0	0	17	34
3:15 PM	1		0		5	10	10	0	0		10	0	0	0		20
3.13 PM	0	8	0	0		15	2	0	0	17	8	0	0	0	8	33
3:45 PM	0	0	0	0	0	15	5	0	0	20	3	0	0	0	3	33
Hourly Total	1		0		27	50	10	0	0		31	1	0	0	(22)	128
	0	15	0	0	15	21	19	0	0	25	31	0	0	0	32	120
4.00 PM	0	14	0	0	14	10	3	0	0	23		1	0	0	4	44
4.13 PM	1	12	0		12	29	1	0	0		3	0	0	0		40
4:30 F M	1	12	0	. 0	13	20	1	0	0	29	5	0	0	0		45
4.43 FM	2	57	0	0	50	22		0	0	23	16	1	0	0	(17)	40
E:00 DM	2		0	. 0		30	3	0	0		F	2	0	0	7	27
5.00 F M	0	16	0	. 0	16	24	0	0	0	24	3	1	0	0	2	51
5.10 PM	0	11	0	0	11	32	0	0	0	32	1	0	0	0	1	50
5:45 PM	0	12	0		12	26		0	0		1	1	0	0	5	30
Hourly Total	0	45	0		45	120	1	0	0	121	12	1	0	0	(16)	192
6:00 PM	0	13	0	0	13	120	0	0	0	13	0	4	0	0		26
6:15 PM	0	6	0		6	21	0	0	0	21	1	0	0	0	1	28
6:30 PM	0		0	0	0	12	0	0	0	12	0	0	0	0	0	16
6:45 PM	0		0	0	5	11	0	0	0	11	0	0	0	0	0	16
Hourly Total	0		0		28	57	0	0	0	57	1	0	0	0		86
7:00 PM	0		0			6	0	0	0	6	0	0	0	0		15
7:00 PM	0	3	0	0	3	2	0	0	0	2	0	0	0	0	0	5
7:10 PM	0		0			4	0	0	0		0	0	0	0	0	9
7.30 PM	0		0	. 0	1	6	0	0	0	6	0	0	0	0	0	7
Hourly Total	0	17	0	0	17	18	0	0	0	18	0	0	0	0	0	35
8:00 PM	0	1	0		1	2	0	0	0	2	1	0	0	0	1	35
8.15 DM	0	2	0		2			0	0	A	0	0	0	0		7
8.30 PM	0	<u>3</u>	0	0	0	2	0	0	0		0	0	0	0	0	2
	0		0		2	2	0	0	0			0	0	0		5
Hourly Total	0	7	0	0	7	10		0	0	10	1	0	0	0		18
Grand Total	11	509	0	0	520	535	419	0	0	954	415	12	0	0	427	1901
Approach %	21	97.9	0.0	-	-	56 1	43.9	0.0	-	-	97.2	2.8	0.0	-		-
Total %	0.6	26.8	0.0	-	27.4	28.1	22 0	0.0	-	50.2	21.8	0.6	0.0	-	22.5	-
	1 0.0	_0.0	0.0					0.0				0.0	0.0		0	